【题目】已知函数.
(1)当时,求在上的值域;
(2)试求的零点个数,并证明你的结论.
【答案】(1)(2)当时, 只有一个零点;当时, 有两个零点.
【解析】试题分析:(1)当时, ,则,而在上恒成立,所以在上递减,由,可得
当时, , 递增;当时, 递减;所以,比较的大小可得,进而可得结果;
(2)原方程等价于实根的个数,原命题也等价于在上的零点个数,讨论, , ,三种情况,分别利用导数研究函数的单调性,结合函数图象与零点存在定理可得结果.
试题解析:(1)当时, ,则,
而在上恒成立,所以在上递减,
, ,
所以在上存在唯一的,使得,而且
当时, , 递增;当时, 递减;
所以,当时, 取极大值,也是最大值,即,
,
所以, 在上的值域为.
(2)令,得, 显然不是方程的根,
那么原方程等价于实根的个数,令,
原命题也等价于在上的零点个数;
又因为,所以在和上都是单调递增的;
(I)若,则
当时, 恒成立,则没有零点;
当时, , ,又在上单调递增的,所以有唯一的零点。
(II)若,则
当时, 恒成立,则没有零点;
当时, , ,又在上单调递增的,所以有唯一的零点
(III)若,则
当时,由 ,则,
则取,则,又,所以在有唯一的零点,
当时, ,
,又在上单调递增的,所以有唯一的零点
综上所述,当时, 只有一个零点;当时, 有两个零点.
科目:高中数学 来源: 题型:
【题目】在数列{an}中,a1=1,a2=,an+1-an+an-1=0 (n≥2,且n∈N*),若数列{an+1+λan}是等比数列.
(1)求实数λ;
(2)求数列{an}的通项公式;
(3)设,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:
温度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得: , , , ,
,线性回归模型的残差平方和,e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);
(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.
( i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.
( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线=x+的斜率和截距的最小二乘估计为
=;相关指数R2=.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该著作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用,如图所示的程序框图的算法思路源于该著作中的“李白沽酒”问题,执行该程序框图,若输出的的值为0,则输入的的值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们可以用随机模拟的方法估计的值,如图程序框图表示其基本步骤(函数是产生随机数的函数,它能随机产生内的任何一个实数).若输出的结果为,则由此可估计的近似值为( )
A. 3.119 B. 3.124 C. 3.132 D. 3.151
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A,B两组,每组n个数.A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2,记ξ=a2-a1,η=b2-b1.
(1)当n=3时,求ξ的分布列和数学期望;
(2)令C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);
(3)对(2)中的事件C, 表示C的对立事件,判断P(C)和P()的大小关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com