精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)探究函数的单调性;

(Ⅱ)若上恒成立,求实数的取值范围.

【答案】(Ⅰ)答案见解析;(Ⅱ) .

【解析】试题分析:

()对函数求导有,分类讨论:若 上单调递增;若 上单调递减,在上单调递增.

()原问题即上恒成立.构造函数:令,则考查分子部分,令 ,则上的增函数.据此分类讨论:①当时, 成立.②当时, 不可能恒成立.综合上述,实数的取值范围是.

试题解析:

Ⅰ)依题意, ,函数

,函数上单调递增;

,当时, ,当时,

函数上单调递减,在上单调递增.

Ⅱ)依题意, ,即上恒成立.

,则

,则上的增函数,即.

①当时, ,所以,因此上的增函数,

,因此时, 成立.

②当时,令,得

求得,(由于,所以舍去

时, ,则上递减,

时, ,则上递增,

所以当时,

因此时, 不可能恒成立.

综合上述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为对考生的月考成绩进行分析,某地区随机抽查了名考生的成绩,根据所得数据画了如下的样本频率分布直方图.

(1)求成绩在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这人中用分层抽样方法抽取出人作出进一步分析,则成绩在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的参数方程为为参数),点是曲线上的一动点,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的方程为 .

(Ⅰ)求线段的中点的轨迹的极坐标方程;

(Ⅱ)求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1若不等式恒成立,则实数的取值范围;

2在(1)中, 取最小值时,设函数.若函数在区间上恰有两个零点,求实数的取值范围;

(3)证明不等式: ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l经过点P(2,0),其倾斜角为,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为

Ⅰ)若直线l与曲线C有公共点,求倾斜角的取值范围;

Ⅱ)设M(x,y)为曲线C上任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求上的值域;

2)试求的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;

②两个变量的线性相关程度越强,则相关系数的值越接近于1;

③两个分类变量的观测值越小,则说明“有关系”的把握程度越大;

④随机变量.

其中为真命题的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】邗江中学高二年级某班某小组共10人,利用寒假参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中选出2人作为该组代表参加座谈会.

(1)记“选出2人参加义工活动的次数之和为4”为事件,求事件发生的概率;

(2)设为选出2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把长和宽分别为和2的长方形沿对角线折成的二面角,下列正确的命题序号是__________

①四面体外接球的体积随的改变而改变;

的长度随的增大而增大;

③当时,长度最长;

④当时,长度等于.

查看答案和解析>>

同步练习册答案