精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(x+1)-x.
(Ⅰ)求f(x)的最大值;
(Ⅱ)设g(x)=f(x)-ax2,直线l是曲线y=g(x)的一条切线.证明:曲线y=g(x)上的任意一点不可能在直线l的上方;
(Ⅲ)求证:对任意正整数n都有
21
21+1
×
22
22+1
×…×
2n
2n+1
1
e
考点:导数在最大值、最小值问题中的应用,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(Ⅰ)确定函数的定义域,求出函数的单调性,即可求f(x)的最大值;
(Ⅱ)设M(x0,y0)是曲线y=g(x)上的任意一点,则函数在M处的切线方程为y-g(x0)=g′(x0)(x-x0),构造h(x)=g(x)-[(
1
x0+1
-2ax0-1)(x-x0)+f(x0)],求出h(x)在x=x0处取得最大值h(x0),即h(x)≤0恒成立,从而得出结论;
(Ⅲ)先证明当x>-1且x≠0时,有ln(x+1)<x,取对数,利用
2n+1
2n
=1+
1
2n
,即可得出结论.
解答: 解:(Ⅰ)f(x)的定义域为(-1,+∞),
∵f(x)=ln(x+1)-x,
∴f′(x)=-
x
x+1

∴-1<x<0,f′(x)>0,函数单调递增,x>0,f′(x)<0,函数单调递减,
∴x=0时,f(x)取得最大值f(0)=0;
(Ⅱ)证明:由(Ⅰ),g(x)=ln(x+1)-ax2-x,
设M(x0,y0)是曲线y=g(x)上的任意一点,则函数在M处的切线方程为y-g(x0)=g′(x0)(x-x0),
即y=(
1
x0+1
-2ax0-1)(x-x0)+f(x0
令h(x)=g(x)-[(
1
x0+1
-2ax0-1)(x-x0)+f(x0)],则
h′(x)=
1
x+1
-2ax-1-(
1
x0+1
-2ax0-1),
∵h′(x0)=0,
∴h′(x)在(-1,+∞)上是减函数,
∴h(x)在(-1,x0)上是增函数,在(x0,+∞)上是减函数,
∴h(x)在x=x0处取得最大值h(x0),即h(x)≤0恒成立,
∴曲线y=g(x)上的任意一点都不可能在直线l的上方;
(Ⅲ)证明:由(Ⅰ)知ln(x+1)≤x在(-1,+∞)是恒成立,当且仅当x=0时,等号成立,
故当x>-1且x≠0时,有ln(x+1)<x,
2n+1
2n
=1+
1
2n

∴ln(
21+1
21
×
22+2
22
×…×
2n+2
2n
)=ln[(1+
1
21
)(1+
1
22
)(1+
1
23
)…(1+
1
2n
)]
1
2
+
1
22
+…+
1
2n
=
1
2
[1-(
1
2
)n]
1-
1
2
=1-
1
2n
<1,
21+1
21
×
22+2
22
×…×
2n+2
2n
<e.
21
21+1
×
22
22+1
×…×
2n
2n+1
1
e
点评:本题考查导数知识的综合运用,考查函数的最值,考查函数的单调性,考查学生分析解决问题的能力,难度大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=1-2a+a2-2acosx-2sin2x.
(1)当a=4时,求f(x)的最大值;
(2)证明:当a∈[-2,2]时,f(x)≥-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,底面ABCD为菱形,∠BAD=60°,AA1
.
.
DD1
.
.
CC1∥BE,且AA1=AB,D1E⊥平面D1AC,AA1⊥底面ABCD.
(Ⅰ)求二面角D1-AC-E的大小;
(Ⅱ)在D1E上是否存在一点B,使得A1P∥平面EAC,若存在,求
D1P
PE
的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知1≤a-b≤2,13≤2a-
b
2
≤20,则3a-
b
3
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D为边BC的中点,则下列向量关系式正确的是(  )
A、
AD
-
AC
=
DC
B、
BD
+
DC
=
0
C、
AD
=
AB
+
AC
D、
AD
=
AB
+
1
2
BC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-1,g(x)=-x2+4x-4.若有f(a)=g(b),则b的取值范围为(  )
A、[2-
2
,2+
2
]
B、(2-
2
,2+
2
C、[1,3]
D、(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

x2+ax+1≤0对x∈[-1,1]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,Sn为其前n项和,a1=4,an=Sn-1+2n+1(n≥2),求a2015

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=x3-3x2-9x+a的图象为曲线C,则下列说法中正确的是
 

①f(x)在区间(-1,+∞)上递增;
②若f(x)至少有两个零点,则a的取值范围为[-5,27];
③对任意x1,x2∈[-1,3],都有|f(x1)-f(x2)|≤32;
④曲线C的对称中心为(1,f(1)).

查看答案和解析>>

同步练习册答案