精英家教网 > 高中数学 > 题目详情

【题目】已知函数在其定义域内有两个不同的极值点.

(1)求的取值范围;

(2)证明:

【答案】(1) (2)见解析

【解析】试题分析:

1)将问题转化为方程有两个不同根处理,令,求出,令可得的取值范围.(2)由(1)知当时, 恒成立,令,可得n个不等式,将不等式两边分别相加可得结论.

试题解析:

(1)由题意知,函数的定义域为

∵函数 在其定义域内有两个不同的极值点,

∴方程有两个不同根.

,则

①当时,则恒成立,故内为增函数,显然不成立.

②当时,

则当时, ,故内为增函数;

时, ,故内为减函数.

所以当时, 有极大值,也为最大值,且

要使方程有两个不等实根,

则需

解得.

综上可知的取值范围为.

(2)由(1)知:当时, 上恒成立,

将以上个式子相加得:

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别是a,b,c,且2acosA=bcosC+ccosB.

(Ⅰ)求A的大小;

(Ⅱ)若a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)在区间上的极小值等于,求a的值;

(2)令,设是函数的两个极值点,若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+2(m为实常数).

(1)若函数f(x)图象上动点P到定点Q(0,2)的距离的最小值为,求实数m的值;

(2)若函数yf(x)在区间[2,+∞)上是增函数,试用函数单调性的定义求实数m的取值范围;

(3)设m<0,若不等式f(x)≤kxx∈[,1]时有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是矩形平面.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a∈R).

(Ⅰ)若a=1,求曲线f(x)在点(e,f(e))处的切线方程;

(Ⅱ)求f(x)的极值;

(Ⅲ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,则下列结论正确的是(  )

A. S2 016=-2 016,a2 013>a4

B. S2 016=2 016,a2 013>a4

C. S2 016=-2 016,a2 013<a4

D. S2 016=2 016,a2 013<a4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856317)为了调查“小学成绩”与“中学成绩”两个变量之间是否存在相关关系,某科研机构将所调查的结果统计如下表所示:

中学成绩不优秀

中学成绩优秀

总计

小学成绩优秀

5

20

25

小学成绩不优秀

10

5

15

总计

15

25

40

则下列说法正确的是(  )

参考数据:

P(K2k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.46

0.71

1.32

2.07

2.71

3.84

5.024

6.635

7.879

10.828

A. 在犯错误的概率不超过0.1的前提下,认为“小学成绩与中学成绩无关”

B. 在犯错误的概率不超过0.1的前提下,认为“小学成绩与中学成绩有关”

C. 在犯错误的概率不超过0.01的前提下,认为“小学成绩与中学成绩无关”

D. 在犯错误的概率不超过0.01的前提下,认为“小学成绩与中学成绩有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来随着我国在教育利研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内确实力企业纷纷进行海外布局,第二轮企业出海潮到来,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派上作的态度,按分层抽样的方式从70后利80后的员工中随机调查了100位,得到数据如下表:

愿意被外派

不愿意被外派

合计

70后

20

20

40

80后

40

20

60

合计

60

40

100

(1)根据凋查的数据,是否有的把握认为“是否愿意被外派与年龄有关”,并说明理由;

(2)该公司参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加,70后的员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

(参考公式: ,其中

查看答案和解析>>

同步练习册答案