精英家教网 > 高中数学 > 题目详情
已知在△ABC中,角A、B、C的对边长分别为a、b、c,已知向量
m
=(sinA+sinC,sinB-sinA),
n
=(sinA-sinC,sinB),且
m
n

(1)求角C的大小;
(2)若a2=b2+
1
2
c2
,试求sin(A-B)的值.
(1)∵
m
=(sinA+sinC,sinB-sinA),
n
=(sinA-sinC,sinB),且
m
n

m
n
=(sinA+sinC)(sinA-sinC)+sinB(sinB-sinA)=0,
即sin2A-sin2C+sin2B-sinAsinB=0,
整理得:sin2C=sin2A+sin2B-sinAsinB,
由正弦定理得:c2=a2+b2-ab,即a2+b2-c2=ab,
再由余弦定理得:cosC=
a2+b2-c2
2ab
=
1
2

∵0<C<π,∴C=
π
3

(2)∵a2=b2+
1
2
c2
∴sin2A=sin2B+
1
2
sin2C,即sin2A-sin2B=
3
8

1-cos2A
2
-
1-cos2B
2
=
3
8
,即cos2B-cos2A=
3
4

∵A+B+C=π,即A+B=
3

∴cos(
3
-2A)-cos2A=
3
4
,即-cos(
π
3
-2A)-cos2A=
3
4

整理得:
1
2
cos2A+
3
2
sin2A+cos2A=-
3
4
,即
3
2
cos2A+
1
2
sin2A=-
3
4

∴sin(2A+
π
3
)=-
3
4

则sin(A-B)=sin[A-(
3
-A)]=sin(2A-
3
)=-sin(2A-
3
+π)=-sin(2A+
π
3
)=
3
4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•吉安县模拟)已知在△ABC中,角A、B、C的对边长分别为a、b、c,已知向量
m
=(sinA+sinC,sinB-sinA),
n
=(sinA-sinC,sinB),且
m
n

(1)求角C的大小;
(2)若a2=b2+
1
2
c2
,试求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,
3
4
),
b
=(cos(x+
π
3
),1)函数f(x)=
a
b

(1)求f(x)的最值和单调递减区间;
(2)已知在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=0,a=
3
,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C的对边分别为a,b,c,且角A,B,C成等差数列,若边a,b,c成等比数列,求sinA•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C所对的边分别为a,b,c,其长度分别为3,4,5,则
AB
BC
+
BC
CA
=
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•泸州二模)已知在△ABC中,角A、B、C的对边分别是a、b、c,且tanB=
2-
3
a2+c2-b2
BC
BA
=
1
2

(Ⅰ)求tanB的值;
(Ⅱ)求
2sin2
B
2
+2sin
B
2
cos
B
2
-1
cos(
π
4
-B)
的值.

查看答案和解析>>

同步练习册答案