精英家教网 > 高中数学 > 题目详情
12.若曲线${C_1}:{x^2}+{y^2}-2x=0$与曲线${C_2}:m{x^2}-xy+mx=0$有三个不同的公共点,则实数m的取值范围是(  )
A.$(0,\sqrt{3})$B.$(-\sqrt{3},0)∪(0,\sqrt{3})$C.$(0,\frac{{\sqrt{3}}}{3})$D.$(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$

分析 把圆的方程化为标准方程,求出圆心和半径,直线过定点(-1,0),当直线mx-y+m=0与圆相切时,根据圆心到直线的距离d=$\frac{2|m|}{\sqrt{{m}^{2}+1}}$=r=1,求出m的值,数形结合求出实数m的取值范围.

解答 解:由题意可知曲线C1:x2+y2-2x=0表示一个圆,化为标准方程得:
(x-1)2+y2=1,所以圆心坐标为(1,0),半径r=1;
${C_2}:m{x^2}-xy+mx=0$表示两条直线x=0和mx-y+m=0,
由直线mx-y+m=0可知:此直线过定点(-1,0),
在平面直角坐标系中画出图象如图所示:
当直线mx-y+m=0与圆相切时,
圆心到直线的距离d=$\frac{2|m|}{\sqrt{{m}^{2}+1}}$=r=1,
化简得:m=±$\frac{\sqrt{3}}{3}$.
则直线y-mx-m=0与圆相交时,m∈(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$),
故选D.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,体现了数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足条件$\left\{\begin{array}{l}{x≥1}\\{x-2y+3≥0}\\{y≥x}\end{array}\right.$,则z=$\frac{y}{x+1}$的最小值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线2x-y+a=0与3x+y-3=0交于第一象限,当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$表示的区域上运动时,m=4x+3y的最大值为8,此时n=$\frac{y}{x+3}$的最大值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在复平面内,复数i(i-1)对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a1=1,a2=-$\frac{1}{1+{a}_{1}}$,a3=-$\frac{1}{1+{a}_{2}}$,…,an+1=-$\frac{1}{1+{a}_{n}}$,….那么a2017=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1,F2分别为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)双曲线a≥1的左、右焦点,双曲线上存在一点P使得(|PF1|-|PF2|)2=b2-3ab,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{15}$C.4D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.随着我国经济的发展,居民的储蓄款逐年增长,设某地区城乡居民人民币储蓄存款(年底余额)如表:
年份20102011201220132014
时间代号t12345
储蓄存款y(千亿元)567810
(1)取y关于t的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$t+a;
(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(2,3)
(1)求($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$的值;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\frac{2sinx•cosx}{1+sinx+cosx}$,x∈(0,$\frac{π}{2}$]的最大值M,最小值为N,则M-N=(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\sqrt{2}$-1C.2$\sqrt{2}$D.$\sqrt{2}$+1

查看答案和解析>>

同步练习册答案