精英家教网 > 高中数学 > 题目详情
3.直线2x-y+a=0与3x+y-3=0交于第一象限,当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$表示的区域上运动时,m=4x+3y的最大值为8,此时n=$\frac{y}{x+3}$的最大值为$\frac{3}{4}$.

分析 由题意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交点,利用当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的区域上运动时,m=4x+3y的最大值为8,求出a.然后利用线性规划求解目标函数的最值即可.

解答 解:由题意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交点($\frac{3-a}{5}$,$\frac{6+3a}{5}$),
当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的区域上运动时,m=4x+3y的最大值为8,
∴4×$\frac{3-a}{5}$+3×$\frac{6+3a}{5}$=8,∴a=2,
此时,直线2x-y+2=0与3x+y-3=0的交点坐标为($\frac{1}{5}$,$\frac{12}{5}$),交于第一象限,
画出约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{3x+y-3≤0}\end{array}\right.$的可行域,目标函数n=$\frac{y}{x+3}$的几何意义是可行域内的点与(-3,0)连线的斜率,
由可行域可知A与(-3,0)连线的斜率最大,由$\left\{\begin{array}{l}{2x-y+2=0}\\{3x+y-3=0}\end{array}\right.$,解得A($\frac{1}{5}$,$\frac{12}{5}$),
n=$\frac{y}{x+3}$的最大值为:$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题考查线性规划知识,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.解关于x的不等式$\frac{x}{x-1}$≥2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.经过点(2,4)的抛物线的标准方程为y2=8x或x2=y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax3-(a+b)x2+bx+c,其中a>0,b、c∈R,若f′($\frac{1}{3}$)=0,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.给定平面内三个向量$\overrightarrow a=(3,2),\overrightarrow b=(-1,2),\overrightarrow c=(4,1)$
(1)若($(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow b+n\overrightarrow c)$,求实数k;
(2)求满足$\overrightarrow a=m\overrightarrow b-n\overrightarrow c$的实数m,n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=$\frac{p}{1-cosθ}$(p>0)
(1)写出直线l的极坐标方程和曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A,B两点,求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.3n+C${\;}_{n}^{1}$3n-1+C${\;}_{n}^{2}$3n-3+…+1=(  ),(n∈N+)(  )
A.2nB.3nC.4nD.4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若曲线${C_1}:{x^2}+{y^2}-2x=0$与曲线${C_2}:m{x^2}-xy+mx=0$有三个不同的公共点,则实数m的取值范围是(  )
A.$(0,\sqrt{3})$B.$(-\sqrt{3},0)∪(0,\sqrt{3})$C.$(0,\frac{{\sqrt{3}}}{3})$D.$(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0
(1)求角B的大小;
(2)若b=$\frac{1}{2}$,求△ABC的周长的取值范围.

查看答案和解析>>

同步练习册答案