精英家教网 > 高中数学 > 题目详情
18.在△ABC中,内角A,B,C的对边分别为a,b,c,b2-c2+2a=0,$\frac{tanC}{tanB}$=3,则a=4.

分析 由已知及余弦定理整理可得cosC=$\frac{a-2}{2b}$,由$\frac{tanC}{tanB}$=3,利用三角函数恒等变换的应用可得:sinCcosB=3cosCsinB,从而可求sinA=4sinBcosC,由正弦定理可得cosC=$\frac{a}{4b}$,联立即可解得a的值.

解答 解:∵由已知可得:c2=b2+2a,
∴由余弦定理c2=b2+a2-2abcosC,可得:2a=a2-2abcosC,整理可得:cosC=$\frac{a-2}{2b}$,①
∴$\frac{tanC}{tanB}$=3,可得:$\frac{sinCcosB}{cosCsinB}=3$,可得:sinCcosB=3cosCsinB,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=4sinBcosC,
∴由正弦定理可得:a=4bcosC,即cosC=$\frac{a}{4b}$,②
∴由①②可得:$\frac{a-2}{2b}$=$\frac{a}{4b}$,解得:a=4.
故答案为:4.

点评 本题主要考查了余弦定理,三角函数恒等变换的应用,正弦定理在解三角形中的综合应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.某射击运动员射击击中目标的概率为97%,估计该运动员射击1000次命中的次数为970.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sin(πx+$\frac{π}{4}$)和函数g(x)=cos(πx+$\frac{π}{4}$)在区间[-$\frac{5}{4}$,$\frac{7}{4}$]上的图象交于A,B,C三点,则△ABC的面积是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\sqrt{2}$D.$\frac{5\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α是第二象限角,$cos(\frac{π}{2}-α)=\frac{4}{5}$,则tanα=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=x+a1nx(a∈R),g(x)=\frac{{{e^{x-1}}}}{x}-1$.
(I)若直线y=0与函数y=f(x)的图象相切,求a的值;
(Ⅱ)设a>0,对于?x1,x2∈[3,+∞)(x1≠x2),都有|f(x1)-f(x2)|<|g(x1)-g(x2)|,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合P={0,2,4,6},集合Q={x∈N|x≤3},则P∩Q=(  )
A.{2}B.{0,2}C.{0,1,2,3,4,6}D.{1,2,3,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设l,m表示不同直线,α,β表示不同平面,则下列结论中正确的是(  )
A.若l∥α,l⊥m,则m⊥αB.若l∥α,l⊥m,m?β,则α⊥β
C.若l∥α,l∥m,则m∥αD.若α∥β,l∥α,l∥m,m?β,则m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设F1、F2分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点,P是椭圆C上的点,且$\overrightarrow{P{F}_{2}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0,坐标原点O到直线PF1的距离是$\frac{1}{3}|{O{F_2}}|$.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)过椭圆C的上顶点B作斜率为k(k>0)的直线l交椭圆C于另一点M,点N在椭圆C上,且BM⊥BN,求证:存在$k∈[{\frac{1}{4},\frac{1}{2}}]$,使得|BN|=2|BM|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),曲线C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.$(θ为参数).
(1)设l与C1相交于A,B两点,求|AB|;
(2)若把曲线C1上各点的横坐标伸长为原来的$\sqrt{3}$倍,纵坐标伸长为原来的3倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最大值.

查看答案和解析>>

同步练习册答案