分析 (Ⅰ)设出切点坐标,求出x0=-a,根据y0=x0+alnx0=0,求出a的值即可;
(Ⅱ)求出函数f(x)的导数,问题转化为a≤$\frac{(x-1{)e}^{x-1}}{x}$-x在[3,+∞)恒成立,即a≤$(\frac{(x-1{)e}^{x-1}}{x}-x)$min,设v(x)=$(\frac{(x-1{)e}^{x-1}}{x}-x)$,根据函数的单调性求出a的范围即可.
解答 解:(Ⅰ)设y=0和y=f(x)的切点是(x0,y0),(x0>0),
∵f′(x)=1+$\frac{a}{x}$,∴f′(x0)=1+$\frac{a}{{x}_{0}}$=0,
解得:x0=-a,
又∵y0=x0+alnx0=0,
∴a=-e;
(Ⅱ)f′(x)=1+$\frac{a}{x}$,g′(x)=$\frac{(x-1{)e}^{x-1}}{{x}^{2}}$,
又a>0,x∈[3,+∞),
∴f′(x)>0,∴g′(x)>0,
∴f(x),g(x)在[3,+∞)递增,
不妨设x1<x2,则f(x1)<f(x2),g(x1)<g(x2),
∴|f(x1)-f(x2)|<|g(x1)-g(x2)|?f(x2)-f(x1)<g(x2)-g(x1),
即f(x1)-g(x1)>f(x2)-g(x2),
设h(x)=f(x)-g(x),
∵h(x1)>h(x2),∴h(x)在[3,+∞)等价,
∵h′(x)=1+$\frac{a}{x}$-$\frac{(x-1{)e}^{x-1}}{{x}^{2}}$≤0,
故a≤$\frac{(x-1{)e}^{x-1}}{x}$-x在[3,+∞)恒成立,
即a≤$(\frac{(x-1{)e}^{x-1}}{x}-x)$min,
设v(x)=$(\frac{(x-1{)e}^{x-1}}{x}-x)$,
v′(x)=ex-1[(${(\frac{1}{x}-\frac{1}{2})}^{2}$+$\frac{3}{4}$]-1≥$\frac{3}{4}$e2-1>0,
∴v(x)在[3,+∞)递增,
∴v(x)≥v(3)=$\frac{{2e}^{2}}{3}$-3,
∴a≤$\frac{{2e}^{2}}{3}$-3,而a>0,
故a的范围是(0,$\frac{{2e}^{2}}{3}$-3].
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0] | B. | [0,3) | C. | (3,4] | D. | (-1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4) | B. | (4,+∞) | C. | (-∞,4)∪(4,+∞) | D. | (-∞,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ②③④ | B. | ①②④ | C. | ①③④ | D. | ①②③ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com