精英家教网 > 高中数学 > 题目详情
若2x+y=2,则32x+3y的最小值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:利用基本不等式的性质、指数运算法则即可得出.
解答: 解:∵2x+y=2,
则32x+3y2
32x3y
=2
32x+y
=2
32
=6,当且仅当2x=y=1时取等号.
∴32x+3y的最小值为6.
故答案为:6.
点评:本题考查了基本不等式的性质、指数运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设n=
π
2
0
(4sinx+cosx)dx,则二项式(x-
1
x
n的展开式中x的系数为(  )
A、4B、10C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校为调查高一新生上学路程所需要的时间(单位:分钟),从高一年级新生中随机抽取100名新生按上学所需时间分组:第1组(0,10],第2组(10,20],第3组(20,30],第4组(30,40],第5组(40,50],得到的频率分布直方图如图所示.
(Ⅰ)根据图中数据求a的值;
(Ⅱ)若从第3,4,5组中用分层抽样的方法抽取6名新生参与交通安全问卷调查,应从第3,4,5组各抽取多少名新生?
(Ⅲ)在(Ⅱ)的条件下,该校决定从这6名新生中随机抽取2名新生参加交通安全宣传活动,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sin(2x+
π
4
).
(1)求它的振幅、周期、初相;
(2)在所给坐标系中用五点法作出它在区间[
π
8
8
]上的图象.
(3)说明y=sinx的图象可由y=
2
sin(2x+
π
4
)的图象经过怎样的变换而得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x2
e-
1
|x|
(其中e为自然对数的底数)
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)在(-∞,0)上求函数f(x)的极值;
(Ⅱ)证明:当x>0时,对任意正整数n都有f(
1
x
)<n!•x2-n

查看答案和解析>>

科目:高中数学 来源: 题型:

PM2.5是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米至75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,北方城市环保局从该市市区2013年全年每天的PM2.5监测数据中随机的抽取20天的数据作为样本,发现空气质量为一级的有4天,为二级的有10天,超标的有6天.
(1)从这20天的日均PM2.5监测数据中,随机抽出三天数据,求恰有一天空气质量达到一级的概率;
(2)从这20天的数据中任取三天数据,求抽到PM2.5监测数据超标的天数不超过2天的概率;
(3)根据这20天的PM2.5日均值来估计一年的空气质量情况,则一年(按365天计算)中平均有多少天的空气质量达到一级或二级.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,-cosωx)(ω>0).函数f(x)=
a
b
,且函数f(x)的最小正周期为π.
(1)当x∈[0,2π]时,求函数f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,满足b2=ac,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在单位圆中,
(1)证明两角差的余弦公式Cα-β:cos(α-β)=cosαcosβ+sinαsinβ;并由Cα-β推导两角差的正弦公式Sα-β:sin(α-β).
(2)计算:sin15°的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,若
2y
x
+
8x
y
>m2+7m恒成立,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案