精英家教网 > 高中数学 > 题目详情
经过两圆x2+y2=4和x2+y2-10x+16=0的公共点且过P(4,2)的圆的个数为
 
个.
考点:圆与圆的位置关系及其判定
专题:计算题,直线与圆
分析:由题意,y2=4-x2,代入x2+y2-10x+16=0,可得x2+(4-x2)-10x+16=0,从而可得两圆相切于点(2,0),即可得出结论.
解答: 解:由题意,y2=4-x2
代入x2+y2-10x+16=0,可得x2+(4-x2)-10x+16=0,
∴10x=20,
∴x=2,
∴y=0,
∴两圆相切于点(2,0).
∴过切点(2,0)且过点p(4,2)的圆的个数有无数个.
故答案为:无数.
点评:本题考查圆与圆的位置关系的判定,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图 在正三棱柱ABC-A1B1C1中,D、F分别是BC、BB1中点.求证:
(1)平面AC1D⊥平面BCC1B1
(2)若BB1=BC,求证:平面FAC⊥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,从参加历史知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图,观察图形,回答下列问题:

(1)补全直方图中80~90这一小组的图形;
(2)若不低于80分为优秀,求样本中优秀人数;
(3)利用频率直方图求60名学生的平均成绩是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

求直线方程:
(1)已知直线过点(1,2)和(8,-2);
(2)已知直线过点(0,0)和(8,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
x
-x+alnx(a∈R).
(1)求函数f(x)的单调区间;
(2)设函数f(x)存在两个极值点x1,x2(x1<x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
AB
AC
满足
AB
|
AB|
+
AC
|
AC
|
=λ(
AB
+
AC
),(λ>0)且
AB
|
AB|
AC
|
AC
|
=
1
2
BC
=2,则△ABC的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2c,若直线y=x-c与椭圆C在第一象限内的一个交点M满足∠F1MF2=2∠MF1F2,则该椭圆的离心率为(  )
A、
6
-
3
B、
3
2
C、
6
-
3
2
D、
6
-
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过原点作曲线
(x-4)2
16
+
y2
4
=1的弦,求弦的中点的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,且过点(-
2
,  
2
2
)

(1)求椭圆C的标准方程;
(2)直线l与椭圆C相交于A、B两点,且|
OA
+
OB
| = |
AB
|,求弦AB长度的取值范围.

查看答案和解析>>

同步练习册答案