精英家教网 > 高中数学 > 题目详情
1.具有公共y轴的两个直角坐标平面α和β所成的二面角α-y轴-β等于60°,已知β内的曲线C'的方程是y2=4x',曲线C'在α内的射影在平面α内的曲线方程为y2=2px,则p=1.

分析 求出y2=4x',焦点坐标为(1,0),再利用平面α和β所成的二面角α-y轴-β等于60°,即可得出结论.

解答 解:β内的曲线C'的方程是y2=4x',焦点坐标为(1,0)
根据题意,得到$\frac{p}{2}$=1•cos60°,∴p=1.
故答案为1.

点评 本题考查平行投影,考查两个坐标系之间的坐标关系,是一个比较简单的题目,解答关键是找出两个坐标间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知直角坐标系中点A(0,1),向量$\overrightarrow{AB}=(-4,-3),\overrightarrow{BC}=(-7,-4)$,则点C的坐标为(  )
A.(11,8)B.(3,2)C.(-11,-6)D.(-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l的方程为y=x+2,点P是抛物线y2=4x上到直线l距离最小的点,点A是抛物线上异于点P的点,直线AP与直线l交于点Q,过点Q与x轴平行的直线与抛物线y2=4x交于点B.
(Ⅰ)求点P的坐标;
(Ⅱ)证明直线AB恒过定点,并求这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图在棱锥P-ABCD中,ABCD为矩形,PD⊥面ABCD,PB=2,PB与面PCD成45°角,PB与面ABD成30°角.
(1)在PB上是否存在一点E,使PC⊥面ADE,若存在确定E点位置,若不存在,请说明理由;
(2)当E为PB中点时,求二面角P-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.住在狗熊岭的7只动物,它们分别是熊大,熊二,吉吉,毛毛,蹦蹦,萝卜头,图图.为了更好的保护森林,它们要选出2只动物作为组长,则熊大,熊二至少一个被选为组长的概率为(  )
A.$\frac{11}{42}$B.$\frac{1}{2}$C.$\frac{11}{21}$D.$\frac{10}{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线$x+\sqrt{3}y-1=0$的倾斜角为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在直角坐标系xOy中,设集合Ω={(x,y)|0≤x≤2,0≤y≤1},在区域Ω内任取一点P(x,y),则满足x+y≥1的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=($\frac{1}{2}$)x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g(1-x2),则关于函数y=h(x)的下列4个结论:
①函数y=h(x)的图象关于原点对称;
②函数y=h(x)为偶函数;
③函数y=h(x)的最小值为0;         
④函数y=h(x)在(0,1)上为增函数
其中,正确结论的序号为②③④.(将你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.曲线C1:y=sinx,曲线${C_2}:{x^2}+{(y+r-\frac{1}{2})^2}={r^2}$(r>0),它们交点的个数(  )
A.恒为偶数B.恒为奇数C.不超过2017D.可超过2017

查看答案和解析>>

同步练习册答案