分析 (I)化简可得{an+1}是以2为首项,3为公比的等比数列,从而求得an=2•3n-1-1;
(Ⅱ)化简bn=(2n+1)2•3n-1,从而利用错位相减法求其前n项和即可.
解答 解:(I)∵an+1=3an+2,
∴an+1+1=3(an+1),又∵a1+1=2,
∴{an+1}是以2为首项,3为公比的等比数列,
故an+1=2•3n-1,
故an=2•3n-1-1;
(Ⅱ)bn=(2n+1)(an+1)=(2n+1)2•3n-1,
故Tn=2×3×1+2×5×3+2×7×32+…+(2n+1)2×3n-1,
3Tn=2×3×3+2×5×32+2×7×33+…+(2n+1)2×3n,
两式作差可得,
2Tn=-6-2×2×3-2×2×32-2×2×33-…-2×2×3n-1+(2n+1)×2×3n,
故Tn=-3-2×3-2×32-2×33-…-2×3n-1+(2n+1)×3n
=-3-2$\frac{3(1-{3}^{n-1})}{1-3}$+(2n+1)×3n
=2n3n.
点评 本题考查了数列的通项公式的求法及构造法的应用,同时考查了错位相减法的应用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com