精英家教网 > 高中数学 > 题目详情
设圆P与圆M:(x+2)2+y2=1和圆N:(x+2)2+y2=1中的一个内切,另一个外切
(1)求点P的轨迹方程;
(2)若|PM|=2|PN|2,求|PN|的值.
考点:轨迹方程
专题:圆锥曲线的定义、性质与方程
分析:(1)利用已知条件转化P满足的关系式,判断轨迹方程满足的圆锥曲线的定义,求出轨迹方程.
(2)利用双曲线的定义,以及已知条件列出方程求解即可.
解答: 解:(1)由题意可得,两圆的圆心分别为M(-2,0)、N(2,0)
因此可得|PM|+1=|PN|-1或|PN|+1=|PM|-1…(4分)
所以||PM|-|PN||=2<|MN|=4…(5分)
所以点P的轨迹是以M、N为焦点,实轴长a=1,c=2,b=
3
的双曲线.…(6分)
所以双曲线的方程为x2-
y2
3
=1…(8分)
(2)由题意可得|PN|≥1
∵|PM|=2|PN|2,①
知|PM|>|PN|,
所以|PM|=|PN|+2.②…(9分)
将②代入①,得2||PN|2-|PN|-2=0,…(10分)
解得|PN|=
17
4
,(舍去
1-
17
4
).
所以|PN|=
1+
17
4
.…(12分)
点评:本题考查双曲线的定义,轨迹方程的求法,注意条件的应用,考查转化思想以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a3=7,a5+a7=26,求数列{an}的通项公式及其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定的数列{cn},如果存在实常数p、q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“优美数列”.
(1)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“优美数列”?若是,指出它对应的实常数p、q,若不是,请说明理由;
(2)已知数列{an}满足a1=2,an+an+1=3•2n(n∈N*).若数列{an}是“优美数列”,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}、{bn},满足bn=log2an(n∈N*),且{bn}为等差数列,a1=2,a3=8.
(1)求数列{an}的通项公式;
(2)试比较
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an 
与1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=xlnx,g(x)=x3+ax2-x+2
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[t,t+2](t>O)上的最小值;
(9)对一切的x∈(O,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
(1)若曲线y=f(x)在x=1处的切线与直线2x-y+1=0平行,求a的值;
(2)求函数f(x)的单调区间;
(3)对任意的n∈N*,求证:
1
2
n2>lnn.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对任意一个三角形,只要它的三边长a,b,c都在函数f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“Л型函数”.则下列函数:①F(x)=
x
;②g(x)=2x;③h(x)=lnx,x∈[2,+∞),其中是“Л型函数”的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是
 
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个算法的伪代码,则输出的k的值是
 

查看答案和解析>>

同步练习册答案