精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2-alnx
(1)若曲线y=f(x)在x=1处的切线与直线2x-y+1=0平行,求a的值;
(2)求函数f(x)的单调区间;
(3)对任意的n∈N*,求证:
1
2
n2>lnn.
考点:导数在最大值、最小值问题中的应用,利用导数研究曲线上某点切线方程
专题:综合题,导数的综合应用
分析:(1)由题意可得f′(1)=2,解出即可;
(2)分a≤0,a>0两种情况讨论,在定义域内解不等式f′(x)>0,f′(x)<0即可;
(3)取a=1,由(2)可得f(x)≥f(1)=
1
2
,由此可得结论;
解答: 解:(1)f′(x)=x-
a
x

由题意知y=f(x)在x=1处的切线斜率为2,即f′(1)=2,
∴1-a=2,解得a=-1;
(2)f(x)的定义域为(0,+∞),
f′(x)=x-
a
x
=
x2-a
x

当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增;
当a>0时,由f′(x)<0,得0<x<
a
;由f′(x)>0,得x>
a

∴当a≤0时,f(x)的递增区间为(0,+∞);当a>0时,f(x)的递减区间是(0,
a
],递增区间是[
a
,+∞).
(3)取a=1,由(2)知,f(x)=
1
2
x2-lnx在[1,+∞)上单调递增,
∴f(x)≥f(1)=
1
2

1
2
x2-lnx
1
2
1
2
x2≥lnx+
1
2

∴对任意的n∈N*
1
2
n2≥lnn+
1
2
>lnn.
点评:该题考查导数的几何意义、利用导数研究函数的单调性、最值,考查学生分析解决问题的能力,注意:求单调区间要在定义域内进行.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanβ=-
1
3
,tanα=2,α,β∈(0,π),求:
(1)求:α+β;
(2)求:tan(β-2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-alnx+bx
(1)若函数f(x)在(0,1)上单调递增,在(1,e)上单调递减,求实数b的最大值;
(2)若f(x)<0对任意的x∈(1,e),-2≤b≤-1都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足:na1+(n-1)a2+…+2an-1+an=(
9
10
n-1+(
9
10
n-2+…+
9
10
+1(n=1,2,3…)
(1)求a1,a2,a3的值;
(2)求an的通项公式;
(3)若bn=-(n+1)an,试问是否存在正整数k,使得对于任意的正整数n,都有bn≤bk成立?若存在求出k的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆P与圆M:(x+2)2+y2=1和圆N:(x+2)2+y2=1中的一个内切,另一个外切
(1)求点P的轨迹方程;
(2)若|PM|=2|PN|2,求|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x,y满足不等式组
x≤1
x+y-2≥0
y≤2
,则目标函数z=3x+2y最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x是1,3,5,x,7,9,13这7个数据的中位数,且l,2,x3,l-m这4个数据的平均数为l,下面给出关于函数 f(x)=m-
5
x
的四个命题:
①函数f(x)的图象关于原点对称;
②函数f(x)在定义域内是递增函数;
③函数 f(x)的最小值为124;
④函数f(x)的零点有2个.
其中正确命题的序号是
 
(填写所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知E、F是x轴上的点,坐标原点O为线段EF的中点,G、P是坐标平面上的动点,点P在线段FG上,|
FG
|=10,|
EF
|=6,(
PE
+
1
2
EG
)•
EG
=0.
(1)求P的轨迹C的方程;
(2)A、B为轨迹C上任意两点,且
OE
OA
+(1-α)
OB
,M为AB的中点,求△OEM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

巳知等比数列{an}满足a>0,n∈N*,且a5•a2n-5=22n(n≥3),则当n≥3时,an=
 

查看答案和解析>>

同步练习册答案