精英家教网 > 高中数学 > 题目详情
在数列中,(1)证明数列是等比数列;(2)求数列的前项和;(3)若不等式对任意都成立,求的最小值。
(Ⅰ) 略  (Ⅱ)   (Ⅲ)1
(1)证明:由题设,得
,所以数列是首项为,且公比为的等比数列.          …… 4分
(2)解:由(1)可知,于是数列的通项公式为.…… 6分
所以数列的前项和.………8分
(Ⅲ)解:对任意的都成立。
的最大值为1(
所以的最小值为1     …………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)奇函数,且当时,有最小值,又.(1)求的表达式;
(2)设,正数数列中,,,求数列的通项公式;
(3)设,数列,.是否存在常数使对任意恒成立.若存在,求的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知数列
(I)求;   (II)求数列的通项公式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

等差数列中,成等比数列,求数列前20项的和

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各项均为正数的数列满足其中n=1,2,3,….
(1)求的值;
(2)求证:
(3)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:数列是首项为1的等差数列,且公差不为零。而等比数列的前三项分别是
(1)求数列的通项公式
(2)若,求正整数的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两数的等差中项为10,等比中项为8,则以两数为根的一元二次方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在等差数列{an}中,a1=1,a7=4,数列{bn}是等比数列,且b1=6,b2=a3,则满足bna26<1的最小整数n是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列的前项和为,若,则等于    ()
A.18B.36C.54D.72

查看答案和解析>>

同步练习册答案