精英家教网 > 高中数学 > 题目详情
18.(理科)已知各项均不相等的等差数列{an}的前四项和为16,且a1,a2,a5成等比数列,数列{bn}满足bn=$\frac{1}{{a}_{n}{a}_{n+1}}$.
(Ⅰ)求数列{an}的通项公式an,和{bn}的前n项和Tn
(Ⅱ)是否存在正整数s,t(1<s<t),使得T1,Ts,Tt成等比数列?若存在,求出s,t的值;若不存在,请说明理由.

分析 (I)设等差数列{an}的公差为d,由S4=16,且a1,a2,a5成等比数列,可得$\left\{\begin{array}{l}{4{a}_{1}+6d=16}\\{({a}_{1}+d)^{2}={a}_{1}({a}_{1}+4d)}\end{array}\right.$,d≠0,解出即可得出an.由bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.利用“裂项求和”可得bn
(II)T1=$\frac{1}{3}$,Ts=$\frac{s}{2s+1}$,Tt=$\frac{t}{2t+1}$.若T1,Ts,Tt成等比数列,则$(\frac{s}{2s+1})^{2}$=$\frac{1}{3}×\frac{t}{2t+1}$,化简整理即可得出.

解答 解:(I)设等差数列{an}的公差为d,
∵S4=16,且a1,a2,a5成等比数列,
∴$\left\{\begin{array}{l}{4{a}_{1}+6d=16}\\{({a}_{1}+d)^{2}={a}_{1}({a}_{1}+4d)}\end{array}\right.$,d≠0,
解得d=2,a1=1,
∴an=2n-1.
∴bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴{bn}的前n项和Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.
(II)T1=$\frac{1}{3}$,Ts=$\frac{s}{2s+1}$,Tt=$\frac{t}{2t+1}$.若T1,Ts,Tt成等比数列,
则$(\frac{s}{2s+1})^{2}$=$\frac{1}{3}×\frac{t}{2t+1}$,可得:$\frac{3}{t}$=$\frac{-2{s}^{2}+4s+1}{{s}^{2}}$,
∴t=$\frac{3{s}^{2}}{-2{s}^{2}+4s+1}$,
由-2s2+4s+1>0,解得$1-\frac{\sqrt{6}}{2}$<s<1+$\frac{\sqrt{6}}{2}$,
∵s∈N*,s>1,可得s=2,解得t=12.
∴当s=2,t=12时,T1,Ts,Tt成等比数列.

点评 本题考查了递推关系、等差数列与等比数列的通项公式、“裂项求和”方法、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设点O在△ABC内部,且有$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,则△BOC、△AOC和△AOB这三个三角形的面积比为1:2:3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC中,三条边的边长之比为6:8:9,则△ABC一定是锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设数列{an}的各项均为正数,前n项和Sn满足Sn=$\frac{1}{6}$(an2+3an-4),则an=3n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.运行如图所示的程序框图,则输出S的值为(  )
A.3B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}的前n项和为Sn,满足Sn=1-an(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}+1}}-\frac{1}{{{a_{n+1}}-1}}$,数列{bn}的前n项和为Tn,求证:对于任意的n∈N*,2n-$\frac{1}{4}<{T_n}$≤2n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足${a_1}=1,{a_{n+1}}-2{a_n}={2^n}(n∈{N^*})$,则数列{an}的通项公式为an=n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系xOy中,已知$x_1^2-ln{x_1}-{y_1}=0$,x2-y2-2=0,则${({x_1}-{x_2})^2}+{({y_1}-{y_2})^2}$的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱柱ABCD-A1B1C1D1中,AB∥CD,AB=BC=CC1=2CD,E为线段AB的中点,F是线段DD1上的动点.
(Ⅰ)求证:EF∥平面BCC1B1
(Ⅱ)若∠BCD=∠C1CD=60°,且平面D1C1CD⊥平面ABCD,求平面BCC1B1与DC1B1平面所成的角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案