精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=($\frac{1}{2}$)x的图象与函数y=g(x)的图象关于直线y=x对称.
(1)若f(g(x))=6-x2,求实数x的值;
(2)若函数y=g(f(x2))的定义域为[m,n](m≥0),值域为[2m,2n],求实数m,n的值;
(3)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值h(a).

分析 (1)根据函数的对称性即可求出g(x),即可得到f(g(x))=x,解得即可.
(2)先求出函数的解析式,得到$\left\{\begin{array}{l}{{m}^{2}=2m}\\{{n}^{2}=2n}\end{array}\right.$,解得m=0,n=2,
(3)由x∈[-1,1]可得t∈[$\frac{1}{2}$,2],结合二次函数的图象和性质,对a进行分类讨论,即可得到函数y=f2(x)-2af(x)+3的最小值h(a)的表达式.

解答 解:(1)∵函数f(x)=($\frac{1}{2}$)x的图象与函数y=g(x)的图象关于直线y=x对称,
∴g(x)=$lo{g}_{\frac{1}{2}}x$,
∵f(g(x))=6-x2
∴$(\frac{1}{2})^{lo{g}_{\frac{1}{2}}x}$=6-x2=x,
即x2+x-6=0,
解得x=2或x=-3(舍去),
故x=2,
(2)y=g(f(x2))=$lo{g}_{\frac{1}{2}}(\frac{1}{{2}^{{x}^{2}}})$=x2
∵定义域为[m,n](m≥0),值域为[2m,2n],
$\left\{\begin{array}{l}{{m}^{2}=2m}\\{{n}^{2}=2n}\end{array}\right.$,
解得m=0,n=2,
(3)令t=($\frac{1}{2}$)x
∵x∈[-1,1],
∴t∈[$\frac{1}{2}$,2],
则y=[f(x)]2-2af(x)+3等价为y=m(t)=t2-2at+3,
对称轴为t=a,
当a<$\frac{1}{2}$时,函数的最小值为h(a)=m($\frac{1}{2}$)=$\frac{13}{4}$-a;
当$\frac{1}{2}$≤a≤2时,函数的最小值为h(a)=m(a)=3-a2
当a>2时,函数的最小值为h(a)=m(2)=7-4a;
故h(a)=$\left\{\begin{array}{l}{7-4a,a>2}\\{-{a}^{2}+3,\frac{1}{2}≤a≤2}\\{-a+\frac{13}{4},a<\frac{1}{2}}\end{array}\right.$

点评 本题考查的知识点是指数函数的图象和性质,二次函数的图象和性质,分段函数,是函数图象和性质的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直线l的方程为y=x+2,点P是抛物线y2=4x上到直线l距离最小的点,点A是抛物线上异于点P的点,直线AP与直线l交于点Q,过点Q与x轴平行的直线与抛物线y2=4x交于点B.
(Ⅰ)求点P的坐标;
(Ⅱ)证明直线AB恒过定点,并求这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在直角坐标系xOy中,设集合Ω={(x,y)|0≤x≤2,0≤y≤1},在区域Ω内任取一点P(x,y),则满足x+y≥1的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=($\frac{1}{2}$)x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g(1-x2),则关于函数y=h(x)的下列4个结论:
①函数y=h(x)的图象关于原点对称;
②函数y=h(x)为偶函数;
③函数y=h(x)的最小值为0;         
④函数y=h(x)在(0,1)上为增函数
其中,正确结论的序号为②③④.(将你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(∁UA)∩B={-2},求实数p、q、r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课代表,共有48种不同的选法(结果用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD与
平面ABCD所成的角依次是$\frac{π}{4}$和$arctan\frac{1}{2}$,AP=2,E、F依次是PB、PC的中点;
(1)求异面直线EC与PD所成角的大小;(结果用反三角函数值表示)
(2)求三棱锥P-AFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.曲线C1:y=sinx,曲线${C_2}:{x^2}+{(y+r-\frac{1}{2})^2}={r^2}$(r>0),它们交点的个数(  )
A.恒为偶数B.恒为奇数C.不超过2017D.可超过2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=|x-3|+|x-a|,如果对任意x∈R,f(x)≥4,则a的取值范围是(  )
A.(-∞,-7]∪[1,+∞)B.[-7,1]C.(-∞,-1]∪[7,+∞)D.[-1,7]

查看答案和解析>>

同步练习册答案