精英家教网 > 高中数学 > 题目详情
1.设函数f(x)=|x-3|+|x-a|,如果对任意x∈R,f(x)≥4,则a的取值范围是(  )
A.(-∞,-7]∪[1,+∞)B.[-7,1]C.(-∞,-1]∪[7,+∞)D.[-1,7]

分析 由绝对值的意义可得|x-3|+|x-a|的最小值等于|a-3|,故有|a-3|≥4,由此求得实数a的取值范围.

解答 解:由题意,|x-3|+|x-a|≥|(x-3)-(x-a)|=|a-3|,
∵对任意x∈R,f(x)≥4,
∴|a-3|≥4,∴a-3≤-4或a-3≥4,即a≤-1或a≥7,
故实数a的取值范围为a≤-1或a≥7.
故选C.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=($\frac{1}{2}$)x的图象与函数y=g(x)的图象关于直线y=x对称.
(1)若f(g(x))=6-x2,求实数x的值;
(2)若函数y=g(f(x2))的定义域为[m,n](m≥0),值域为[2m,2n],求实数m,n的值;
(3)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某班级要从4名男生,2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为(  )
A.20B.18C.16D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
(1)$(\frac{9}{4}{)^{\frac{1}{2}}}-{(-2.5)^0}-{(\frac{8}{27})^{\frac{2}{3}}}+{(\frac{3}{2})^{-2}}$;
(2)(lg 5)2+lg 2•lg 50.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,|$\overrightarrow{a}$+$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{5π}{3}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用反证法证明命题“三角形的三个内角中至多有一个是钝角”时,假设正确的是(  )
A.假设三角形的内角三个内角中没有一个是钝角
B.假设三角形的内角三个内角中至少有一个是钝角
C.假设三角形的内角三个内角中至多有两个是钝角
D.假设三角形的内角三个内角中至少有两个是钝角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,由于函数f(x)=sin(π-ωx)sin($\frac{π}{2}$+φ)-sin(ωx+$\frac{3π}{2}$)sinφ(ω>0)的图象部分数据已污损,现可以确认点C($\frac{5π}{2}$,0),其中A点是图象在y轴左侧第一个与x轴的交点,B点是图象在y轴右侧第一个最高点,则f(x)在下列区间中是单调的(  )
A.(0,$\frac{5π}{8}$)B.($\frac{5π}{8}$,$\frac{5π}{3}$)C.($\frac{5π}{3}$,2π)D.($\frac{5π}{3}$,$\frac{5π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某企业生产的新产品必须先靠广告打开销路,该产品广告效应y(单位:元)是产品的销售额与广告费x(单位:元)之间的差,如果销售额与广告费x的算术平方根成正比,根据对市场的抽样调查,每付出100元的广告费,所得销售额是1000元.
(Ⅰ)求出广告效应y与广告费x之间的函数关系式;
(Ⅱ)该企业投入多少广告费才能获得最大的广告效应?是不是广告费投入越多越好?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线l与坐标轴不垂直且横、纵截距相等,圆C:(x+1)2+(y-2)2=r2,若直线l和圆C相切,且满足条件的直线l恰好有三条,则圆的半径r的取值集合为(  )
A.$\left\{{1,\sqrt{5}}\right\}$B.$\left\{{\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$C.$\left\{{1,\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$D.$\left\{{1,2,\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$

查看答案和解析>>

同步练习册答案