分析 过B作BC的垂线交CE的延长线于点F,从而可推出AC∥BF,根据平行线的性质可得到两组对应角相等从而可判定△ACE∽△BFE,根据相似三角形的对应边对应成比例可得到AC=2BF,进而得到CD=BF,再利用HL判定△ACD≌△CBF,由全等三角形的性质得其对应角相等,再根据等角的性质不难证得结论.
解答
证明:过B作BC的垂线交CE的延长线于点F,(1分)
∴∠FBC=90°,
∵∠ACB=90°,
∴∠FBC=∠ACB=90°.
∴AC∥BF,
∴∠ACE=∠EFB,∠CAE=∠EBF
∴△ACE∽△BFE.(3分)
∴$\frac{AC}{BF}=\frac{AE}{EB}$=2.
∴AC=2BF.(4分)
∵D是BC的中点,∴BC=2CD,
∵AC=BC,
∴CD=BF.(5分)
在△ACD和△CBF中
$\left\{\begin{array}{l}{AC=CB}\\{∠ACB=∠CBF=90°}\\{CD=BF}\end{array}\right.$,
∴△ACD≌△CBF.(6分)
∴∠1=∠2.
∴∠2+∠3=∠1+∠3=90°.
∴∠4=90°.
∴CE⊥AD.(7分)
点评 此题主要考查学生对全等三角形的判定及性质及相似三角形的判定及性质的综合运用.
科目:高中数学 来源:2017届甘肃会宁县一中高三上学期9月月考数学(文)试卷(解析版) 题型:选择题
已知x=ln π,y=log52,z=
则( )
A.x<y<z B.z<x<y C.z<y<x D.y<z<x
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com