精英家教网 > 高中数学 > 题目详情
19.如图,在等腰直角三角形ABC中,AC=BC,D是BC的中点,E是线段AB上的点,且AE=2BE.求证:AD⊥CE.

分析 过B作BC的垂线交CE的延长线于点F,从而可推出AC∥BF,根据平行线的性质可得到两组对应角相等从而可判定△ACE∽△BFE,根据相似三角形的对应边对应成比例可得到AC=2BF,进而得到CD=BF,再利用HL判定△ACD≌△CBF,由全等三角形的性质得其对应角相等,再根据等角的性质不难证得结论.

解答 证明:过B作BC的垂线交CE的延长线于点F,(1分)
∴∠FBC=90°,
∵∠ACB=90°,
∴∠FBC=∠ACB=90°.
∴AC∥BF,
∴∠ACE=∠EFB,∠CAE=∠EBF
∴△ACE∽△BFE.(3分)
∴$\frac{AC}{BF}=\frac{AE}{EB}$=2.
∴AC=2BF.(4分)
∵D是BC的中点,∴BC=2CD,
∵AC=BC,
∴CD=BF.(5分)
在△ACD和△CBF中
$\left\{\begin{array}{l}{AC=CB}\\{∠ACB=∠CBF=90°}\\{CD=BF}\end{array}\right.$,
∴△ACD≌△CBF.(6分)
∴∠1=∠2.
∴∠2+∠3=∠1+∠3=90°.
∴∠4=90°.
∴CE⊥AD.(7分)

点评 此题主要考查学生对全等三角形的判定及性质及相似三角形的判定及性质的综合运用.

练习册系列答案
相关习题

科目:高中数学 来源:2017届甘肃会宁县一中高三上学期9月月考数学(文)试卷(解析版) 题型:选择题

已知x=ln π,y=log52,z=则( )

A.x<y<z B.z<x<y C.z<y<x D.y<z<x

查看答案和解析>>

科目:高中数学 来源:2017届安徽六安一中高三上学期月考二数学(文)试卷(解析版) 题型:选择题

已知函数至少有5个零点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,$AC=\sqrt{2}$.
(1)证明:DE⊥平面ACD;
(2)求二面角B-AD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax2-x+3lnx,x=1是函数f(x)的一个极值点.
(1)求a的值及函数f(x)的单调区间;
(2)若仅存在一个整数x0,使得f(x0)-kx0-k>0成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,$AB=2\sqrt{2},CD=\sqrt{2}$,E,F分别是AB,AP的中点.
(1)求证:AC⊥EF;
(2)求二面角F-OE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.?x∈R,使不等式|x-2|+|x-4|≤2$\sqrt{2}$sinα成立,则α的取值范围为2kπ+$\frac{π}{4}$≤α≤2kπ+$\frac{3π}{4}$(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图是某圆拱形桥一孔圆拱的示意图.这个图的圆拱跨度AB=20m,拱高OP=4m,建造时每间隔4m需要用一根支柱支撑,则支柱A2P2=3.86m
(参考数据:$\sqrt{30}$=5.478,$\sqrt{33}$=5.744,精确到0.01m).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图:已知PA=PB,∠APB=2∠ACB,AC与PB交于点D,若PB=4,PD=3,AD=5,则DC=$\frac{7}{5}$.

查看答案和解析>>

同步练习册答案