精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
2
2
AB,
(1)证明:BC1∥平面A1CD;
(2)AA1=2,求三棱锥C-A1DE的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(1)通过证明BC1平行平面A1CD内的直线DG,利用直线与平面平行的判定定理证明BC1∥平面A1CD
(2)证明CD⊥平面ABB1A1,DE⊥A1D,即可求出三棱锥C-A1DE的体积.
解答: (1)证明:连结AC1交A1C于点G,则F为AC1的中点,
又D是AB中点,连结DF,则BC1∥DG,
因为DG?平面A1CD,BC1?平面A1CD,
所以BC1∥平面A1CD.
(2)解:因为直棱柱ABC-A1B1C1,所以AA1⊥CD,
由已知AC=CB,D为AB的中点,所以CD⊥AB,
又AA1∩AB=A,于是,CD⊥平面ABB1A1
设AB=2
2
,则AA1=AC=CB=2,得∠ACB=90°,
CD=
2
,A1D=
6
,DE=
3
,A1E=3
故A1D2+DE2=A1E2,即DE⊥A1D,
所以VC-A1DE=
1
3
×
1
2
×
6
×
3
×
2
=1.
点评:本题考查直线与平面平行的判定定理的应用,三棱锥的体积的求法,考查空间想象能力与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=logax的图象与直线y=
1
3
x相切,则a的值为(  )
A、e
e
2
B、e
3
e
C、
5
ee
D、e
e
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,底面是等腰梯形的四棱锥E-ABCD中,EA⊥平面ABCD,AB∥CD,AB=2CD,∠ABC=
π
3

(Ⅰ)设F为EA的中点,证明:DF∥平面EBC;
(Ⅱ)若AE=AB=2,求三棱锥B-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,已知b=3,c=8,角A为锐角,△ABC的面积为6
3

(1)求角A的大小;
(2)求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有排成一行的7个空位置,3位女生去坐,要求任何两个女生之间都要有空位,共有
 
种不同的坐法.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,BA⊥平面AA1C1C,AB=2
2
,AA1=AC=4,∠A1C1C=
π
3

(1)求证:AB1⊥BC;
(2)求直线B1C1与平面B1A1C所成的角;
(3)求点C1到平面AB1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H是线段EF的中点.
(1)求证:平面AHC⊥平面BCE; 
(2)求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面ABC,AB=6,BC=8,AC=10,求证:平面PAB⊥平面PBC.

查看答案和解析>>

同步练习册答案