精英家教网 > 高中数学 > 题目详情
如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H是线段EF的中点.
(1)求证:平面AHC⊥平面BCE; 
(2)求此几何体的体积.
考点:棱柱、棱锥、棱台的体积,平面与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(1)由已知条件推导出AH⊥AB,AH⊥BC,AC⊥BC,从而得到BC⊥面AHC,由此能证明面AHC⊥面BCE.
(2)V=VE-ACB+VF-ADC+VC-AEF
解答: (1)证明:在菱形ABEF中,因为∠ABE=60°,所以△AEF是等边三角形,
又因为H是线段EF的中点,所以AH⊥EF⇒AH⊥AB
因为面ABEF⊥面ABCD,且面ABEF∩面ABCD=AB,
所以AH⊥面ABCD,所以AH⊥BC,
在直角梯形中,AB=2AD=2CD=4,∠BAD=∠CDA=90°,得到AC=BC=2
2

从而AC2+BC2=AB2,所以AC⊥BC,又AH∩AC=A
所以BC⊥面AHC,
又BC?面BCE,所以平面AHC⊥平面BCE….(6分)
(2)解:因为V=VE-ACB+VF-ADC+VC-AEF
S△ACB=4,S△ADC=2,S△AEF=4
3

所以V=VE-ACB+VF-ADC+VF-ACE=
1
3
(2
3
×4+2
3
×2+2×4
3
)=
20
3
3
..(12分)
点评:本题考查平面与平面垂直的证明,考查几何体的体积的计算,正确运用平面与平面垂直的判定定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若实数a,b,c,d满足a>b,c>d,则下列不等式成立的是(  )
A、a-c>b-d
B、a+c>b+d
C、ac>bd
D、
a
d
b
c

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AD=1,点M是SD的中点,AN⊥SC,交SC于点N.
(1)求证:平面SAC⊥平面AMN;
(2)求三棱锥S-ACM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
2
2
AB,
(1)证明:BC1∥平面A1CD;
(2)AA1=2,求三棱锥C-A1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(1+cosα,sinα),参数α∈[0,π],点Q在曲线C:ρ=
10
2
sin(θ-
π
4
)
上.
(Ⅰ)求在直角坐标系中点P的轨迹方程和曲线C的方程;
(Ⅱ)求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O1和⊙O2相交于A,B两点,过A点作⊙O1的切线交⊙O2于点E,连接EB并延长交⊙O1于点C,直线CA交⊙O2于点D.
(Ⅰ)如图,当点D与点A不重合时,证明:EA=ED;
(Ⅱ)当点D与点A重合时,若BC=2,CE=8,求⊙O1的直径.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2-13n+1.
(1)求数列的通项公式;
(2)求Sn的最大或最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是椭圆上一点,F1,F2为两焦点,且F1P⊥F2P,若点P到两焦点的距离分别为6和8,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M、N分别是f(x)=
x2-4x-5
和g(x)=log3(-x2+2x+8)的定义域.求:
(1)集合M,N;
(2)M∩N,(∁RM)∪N.

查看答案和解析>>

同步练习册答案