精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x2-alnx.
(Ⅰ)若a=4,求函数f(x)的极小值;
(Ⅱ)设函数g(x)=-
3
2
x2+(1-a)x
,试问:在定义域内是否存在三个不同的自变量xi(x=1,2,3)使得f(xi)+g(xi)的值相等,若存在,请求出a的范围,若不存在,请说明理由?
考点:导数在最大值、最小值问题中的应用,利用导数研究函数的极值
专题:综合题,导数的综合应用
分析:(1)由a=4,得函数f(x)的解析式,求出其导函数以及导数为0的根,通过比较两根的大小找到函数的单调区间,进而求出f(x)的极小值;
(2)若定义域内存在三个不同的自变量的取值xi(i=1,2,3),使得f(xi)-g(xi)的值恰好都相等,设f(xi)+g(xi)=m.(i=1,2,3),则对于某一实数m,方程f(x)+g(x)=m在(0,+∞)上有三个不等的实数,由此能求出在定义域内不存在三个不同的自变量的取值xi(i=1,2,3)使得f(xi)+g(xi)的值恰好都相等.
解答: 解:(Ⅰ)定义域为(0,+∞),由已知得f′(x)=
4(x2-1)
x
,…(2分)
则当0<x<1时f'(x)<0,可得函数f(x)在(0,1)上是减函数,
当x>1时f′(x)>0,可得函数f(x)在(1,+∞)上是增函数,
故函数的极小值为f(1)=2;                 …(6分)
(Ⅱ)若存在,设f(xi)+g(xi)=m(i=1,2,3),
则对于某一实数m方程f(x)+g(x)-m=0在(0,+∞)上有三个不等的实根,
F(x)=f(x)+g(x)-m=2x2-alnx-
3
2
x2+(1-a)x-m

则函数F(x)=f(x)+g(x)-m的图象与x轴有三个不同交点,
F′(x)=4x-
a
x
-3x+1-a=
x2+(1-a)x-a
x
在(0,+∞)有两个不同的零点.  …(9分)
显然F′(x)=
x2+(1-a)x-a
x
=
(x+1)(x-a)
x
在(0,+∞)上至多只有一个零点
则函数F(x)=f(x)+g(x)-m的图象与x轴至多有两个不同交点,
则这样的a不存在.                                                 …(13分)
点评:本题考查函数的单调区间的求法,考查满足条件的实数的取值范围的求法.综合性强,难度大,具有一定的探索性.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=x+yi(x,y∈R),且z2=8i(i是虚数单位),则z=(  )
A、2+2i
B、-2+2i或-2-2i
C、-2-2i
D、2+2i或-2-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ax2-lnx
(1)求f(x)的单调区间;
(2)当a=
1
8
时,证明:方程f(x)=f(
2
3
)在区间(2,+∞)内有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x+m,g(x)=x3-3ax2+2bx,且函数g(x)=x3-3ax2+2bx在x=1处的切线方程为y=-1,
(1)求a,b的值;
(2)若对于任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)<g(x2)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C的对边分别为a,b,c,满足2asinA=(2b-
3
c)sinB+(2c-
3
b)sinC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,b=2
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商店商品每件成本10元,若售价为25元,则每天能卖出288件,经调查,如果降低价格,销售量可以增加,且每天多卖出的商品件数t与商品单价的降低值x(单位:元,0≤x≤15)的关系是t=6x2
(1)将每天的商品销售利润y表示成x的函数;
(2)如何定价才能使每天的商品销售利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且满足a(sinA-sinB)+bsinB=csinC上.
(1)求角C的值;
(2)若c=1,且△ABC为锐角三角形,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,且∠A满足:2cos2A-2
3
sinAcosA=-1.
(Ⅰ)若a=2
3
,c=2,求△ABC的面积;
(Ⅱ)求
b-2c
a•cos(60°+C)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某几何体的三视图,则该几何体的外接球的表面积为
 

查看答案和解析>>

同步练习册答案