精英家教网 > 高中数学 > 题目详情
如图是某几何体的三视图,则该几何体的外接球的表面积为
 

考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.
解答: 解:由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,
底面为等腰直角三角形,斜边长为2,如图:
∴△ABC的外接圆的圆心为斜边AC的中点D,OD⊥AC,且OD?平面SAC,
∵SA=AC=2,∴SC的中点O为外接球的球心,
∴半径R=
2

∴外接球的表面积S=4π×2=8π.
故答案为:8π.
点评:本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-alnx.
(Ⅰ)若a=4,求函数f(x)的极小值;
(Ⅱ)设函数g(x)=-
3
2
x2+(1-a)x
,试问:在定义域内是否存在三个不同的自变量xi(x=1,2,3)使得f(xi)+g(xi)的值相等,若存在,请求出a的范围,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x(e为自然对数的底数).
(1)求f(x)的最小值;
(2)设不等式f(x)>ax的解集为P,若M={x|
1
2
≤x≤2}
,且M∩P≠∅,求实数a的取值范围
(3)已知n∈N*,且Sn=
n
0
f(x)dx
,是否存在等差数列{an}和首项为f(1)公比大于0的等比数列{bn},使得Sn=An+Bn(其中An,Bn分别是数列{an},{bn}的前n项和)?若存在,请求出数列{an},{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知虚数α、β满足α2+pα+1=0和β2+pβ+1=0(其中p∈R),若|α-β|=1,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的焦点为F,准线与x轴交于点M,过M点斜率为k的直线l与抛物线C交于第一象限内的A,B两点,若|AM|=
5
4
|AF|,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=an+1(n∈N*),且a2+a4+a6=18,则log3(a5+a7+a9)等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标平面内能完全“覆盖”区域Ω:
y≤2
x+y+4≥0
x-y-2≤0
的最小圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式f(1)<f(lg(2x))的x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知棱长为1的正方体ABCD-A1B1C1D1中,P,Q是面对角线A1B1上的两个不同的动点.
①存在P,Q两点,使BP⊥DQ;
②存在P,Q两点,使BP,DQ与直线B1C都成45°的角;
③若|PQ|=1,则四面体BDPQ的体积一定是定值;
④若|PQ|=1,则四面体BDPQ在该正方体六个面上的正投影的面积的和为定值.
以上命题为真命题的个数是
 

查看答案和解析>>

同步练习册答案