ÒÑÖªº¯Êýf£¨x£©=ex-x£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®
£¨1£©Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Éè²»µÈʽf£¨x£©£¾axµÄ½â¼¯ÎªP£¬ÈôM={x|
1
2
¡Üx¡Ü2}
£¬ÇÒM¡ÉP¡Ù∅£¬ÇóʵÊýaµÄȡֵ·¶Î§
£¨3£©ÒÑÖªn¡ÊN*£¬ÇÒSn=
¡Ò
n
0
f(x)dx
£¬ÊÇ·ñ´æÔڵȲîÊýÁÐ{an}ºÍÊ×ÏîΪf£¨1£©¹«±È´óÓÚ0µÄµÈ±ÈÊýÁÐ{bn}£¬Ê¹µÃSn=An+Bn£¨ÆäÖÐAn£¬Bn·Ö±ðÊÇÊýÁÐ{an}£¬{bn}µÄǰnÏîºÍ£©£¿Èô´æÔÚ£¬ÇëÇó³öÊýÁÐ{an}£¬{bn}µÄͨÏʽ£®Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºµ¼ÊýÔÚ×î´óÖµ¡¢×îСֵÎÊÌâÖеÄÓ¦ÓÃ,¶¨»ý·Ö,ÊýÁеÄÇóºÍ
רÌ⣺µ¼ÊýµÄ×ÛºÏÓ¦ÓÃ
·ÖÎö£º£¨1£©Çó³öÔ­º¯ÊýµÄµ¼º¯Êý£¬½âµÃµ¼º¯ÊýµÄÁãµã£¬Óɺ¯ÊýÁãµã¶Ô¶¨ÒåÓò·Ö¶Î£¬ÀûÓú¯ÊýÔÚ¸÷Çø¼ä¶ÎÄڵķûºÅÅжÏÔ­º¯ÊýµÄµ¥µ÷ÐÔ´Ó¶øÇóµÃº¯ÊýµÄ¼«Ð¡Öµ£¬Ò²¾ÍÊÇ×îСֵ£»
£¨2£©ÓÉM¡ÉP¡Ù∅£¬¿ÉÖª²»µÈʽf£¨x£©£¾axÔÚÇø¼ä[
1
2
£¬2
]ÉÏÓн⣮´úÈëf£¨x£©µÄ½âÎöʽºóת»¯Îªa£¼
ex
x
-1
ÔÚÇø¼ä[
1
2
£¬2
]ÉÏÓн⣬¹¹Ô캯Êýg£¨x£©=
ex
x
-1£¬x¡Ê[
1
2
£¬2]
£®Óɵ¼ÊýÇóÆä×î´óÖµ£¬ÔòʵÊýaµÄȡֵ·¶Î§¿ÉÇó£»
£¨3£©Éè´æÔÚ¹«²îΪdµÄµÈ²îÊýÁÐ{an}ºÍÊ×ÏîΪf£¨1£©¡¢¹«±Èq£¾0µÄµÈ±ÈÊýÁÐ{bn}£¬Ê¹µÃSn=An+Bn£¬Óɶ¨»ý·ÖÇóµÃSn£¬ÔÙÓÉSn=An+Bn£¬·Ö±ðÈ¡n=1£¬2£¬3Çó³öµÈ²îÊýÁеĹ«²îºÍµÈ±ÈÊýÁеĹ«±È£¬µÃµ½µÈ²îÊýÁк͵ȱÈÊýÁеÄͨÏʽ£¬ÑéÖ¤ºóµÃ´ð°¸£®
½â´ð£º ½â£º£¨1£©º¯Êýf£¨x£©=ex-x£¬Ôòf¡ä£¨x£©=ex-1£¬
ÓÉf¡ä£¨x£©=0£¬µÃx=0£®
µ±x£¾0ʱ£¬f¡ä£¨x£©£¾0£¬
µ±x£¼0ʱ£¬f¡ä£¨x£©£¼0£¬
¡àf£¨x£©ÔÚ£¨-¡Þ£¬0£©Éϵݼõ£¬ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö£®
¡àf£¨x£©min=f£¨0£©=1£»
£¨2£©¡ßM={x|
1
2
¡Üx¡Ü2}
£¬ÇÒM¡ÉP¡Ù∅£¬
¡à²»µÈʽf£¨x£©£¾axÔÚÇø¼ä[
1
2
£¬2
]ÉÏÓн⣮
ÓÉf£¨x£©£¾ax£¬µÃex-x£¾ax£¬
¼´a£¼
ex
x
-1
ÔÚÇø¼ä[
1
2
£¬2
]ÉÏÓн⣮
Áîg£¨x£©=
ex
x
-1£¬x¡Ê[
1
2
£¬2]
£®
¡ßg¡ä(x)=
(x-1)ex
x2
£¬
¡àµ±x¡Ê(
1
2
£¬1)
ʱ£¬g¡ä£¨x£©£¼0£¬g£¨x£©µ¥µ÷µÝ¼õ£»
µ±x¡Ê£¨1£¬2£©Ê±£¬g¡ä£¨x£©£¾0£¬g£¨x£©µ¥µ÷µÝÔö£®
ÓÖg(
1
2
)=2
e
-1
£¬g(2)=
e2
2
-1
£¬ÇÒg£¨2£©£¾g£¨
1
2
£©£¬
¡àg(x)max=g(2)=
e2
2
-1
£®
¡àa£¼
e2
2
-1
£»
£¨3£©Éè´æÔÚ¹«²îΪdµÄµÈ²îÊýÁÐ{an}ºÍÊ×ÏîΪf£¨1£©¡¢¹«±Èq£¾0µÄµÈ±ÈÊýÁÐ{bn}£¬Ê¹µÃSn=An+Bn£¬
¡ßSn=
¡Ò
n
0
f(x)dx
=
¡Ò
n
0
(ex-x)dx
=(ex-
1
2
x2+c
)|
n
0
=en-
1
2
n2-1
£®
b1=f£¨1£©=e-1£¬
ÓÉa1+b1=S1£¬¼´a1+e-1=e-
3
2
£¬µÃa1=-
1
2
£®
ÓÉn¡Ý2ʱ£¬an+bn=Sn-Sn-1=en-1(e-1)-n+
1
2
£®
·Ö±ðÈ¡n=2£¬3µÃ£º-
1
2
+d+(e-1)q=e(e-1)-
3
2
  ¢Ù
-
1
2
+2d+(e-1)q2=e2(e-1)-
5
2
  ¢Ú
¢Ú-¢Ù¡Á2µÃ£¬q2-2q=e2-2e£¬½âµÃ£ºq=e»òq=2-e£¨Éᣩ£®
¹Êq=e£¬d=-1£®
´Ëʱan=-
1
2
+(n-1)(-1)=
1
2
-n
£»
bn=(e-1)•en-1£¬ÇÒan+bn=(e-1)en-1+
1
2
-n
£¬Âú×ãSn=An+Bn£®
¡à´æÔÚÂú×ãÌõ¼þµÄÊýÁÐ{an}£¬{bn}ʹµÃSn=An+Bn£®
µãÆÀ£º±¾Ì⿼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄ×îÖµ£¬¿¼²éÁËÊýѧת»¯Ë¼Ïë·½·¨£¬¶ÔÓÚ£¨2£©µÄÇó½â£¬°Ña£¼
ex
x
-1
ÔÚÇø¼ä[
1
2
£¬2
]ÉÏÓнâת»¯ÎªaСÓÚº¯Êýg£¨x£©=
ex
x
-1£¬x¡Ê[
1
2
£¬2]
µÄ×îСֵÊǹؼü£®ÑµÁ·ÁËÊýÁÐͨÏʽµÄÇ󷨣¬Êô×ÛºÏÐÔ½ÏÇ¿µÄÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªa£¾0£¬º¯Êýf£¨x£©=ax2-lnx
£¨1£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©µ±a=
1
8
ʱ£¬Ö¤Ã÷£º·½³Ìf£¨x£©=f£¨
2
3
£©ÔÚÇø¼ä£¨2£¬+¡Þ£©ÄÚÓÐΨһ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒÂú×ãa£¨sinA-sinB£©+bsinB=csinCÉÏ£®
£¨1£©Çó½ÇCµÄÖµ£»
£¨2£©Èôc=1£¬ÇÒ¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬Çó¡÷ABCµÄÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒ¡ÏAÂú×㣺2cos2A-2
3
sinAcosA=-1£®
£¨¢ñ£©Èôa=2
3
£¬c=2£¬Çó¡÷ABCµÄÃæ»ý£»
£¨¢ò£©Çó
b-2c
a•cos(60¡ã+C)
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=n2-4n+4£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊÔ¹¹ÔìÒ»¸öÊýÁÐ{bn}£¨Ð´³ö{bn}µÄÒ»¸öͨÏʽ£©Âú×㣺¶ÔÈÎÒâµÄÕýÕûÊýn¶¼ÓÐbn£¼an£¬ÇÒ
lim
n¡ú¡Þ
an
bn
=2£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Éè¸÷Ïî¾ù²»ÎªÁãµÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãµÄÕýÕûÊýiµÄ¸öÊý³ÆÎªÕâ¸öÊýÁÐ{cn}µÄ±äºÅÊý£®Áîcn=1-
4
an
£¨n¡ÊN*£©£¬ÇóÊýÁÐ{cn}µÄ±äºÅÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=aln£¨2x+1£©+bx+1£®
£¨¢ñ£©Èôº¯Êýy=f£¨x£©ÔÚx=1´¦È¡µÃ¼«Öµ£¬ÇÒÇúÏßy=f£¨x£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏßÓëÖ±Ïß2x+y-3=0ƽÐУ¬ÇóaµÄÖµ£»
£¨¢ò£©Èôb=
1
2
£¬ÊÔÌÖÂÛº¯Êýy=f£¨x£©µÄµ¥µ÷ÐÔ£®
£¨¢ó£©Èô¶Ô¶¨ÒåÓòÄÚµÄÈÎÒâx£¬¶¼ÓÐf(x)¡Ý(b-
1
2
)x+
3
4
³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª|
a
|=2£¬|
b
|=4£¬
a
ºÍ
b
µÄ¼Ð½ÇΪ
¦Ð
3
£¬ÒÔ
a
£¬
b
ΪÁÚ±ß×÷ƽÐÐËıßÐΣ¬Ôò¸ÃËıßÐεÄÃæ»ýΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼÊÇij¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåµÄÍâ½ÓÇòµÄ±íÃæ»ýΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýy=f£¨x£©Óëy=ex+2µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬Ôòf£¨x£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸