ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=n2-4n+4£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊÔ¹¹ÔìÒ»¸öÊýÁÐ{bn}£¨Ð´³ö{bn}µÄÒ»¸öͨÏʽ£©Âú×㣺¶ÔÈÎÒâµÄÕýÕûÊýn¶¼ÓÐbn£¼an£¬ÇÒ
lim
n¡ú¡Þ
an
bn
=2£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Éè¸÷Ïî¾ù²»ÎªÁãµÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãµÄÕýÕûÊýiµÄ¸öÊý³ÆÎªÕâ¸öÊýÁÐ{cn}µÄ±äºÅÊý£®Áîcn=1-
4
an
£¨n¡ÊN*£©£¬ÇóÊýÁÐ{cn}µÄ±äºÅÊý£®
¿¼µã£ºÊýÁеÄÓ¦ÓÃ
רÌ⣺×ÛºÏÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÀûÓÃn¡Ý2ʱ£¬an=Sn-Sn-1=2n-5£¬¿ÉÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¹¹ÔìÊýÁÐbn=n-k£¬¶ÔÈÎÒâµÄÕýÕûÊýn¶¼ÓÐbn£¼an£¬¿ÉµÃk£¾3£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©ÑéÖ¤n¡Ý2ʱ£¬ÓÐ2¸ö±äºÅÊý£»ÅжÏn=1ʱ±äºÅÊýÓÐ1¸ö£¬×îºó×ۺϴ𰸿ɵã®
½â´ð£º ½â£º£¨1£©¡ßSn=n2-4n+4£¬
¡àn¡Ý2ʱ£¬an=Sn-Sn-1=2n-5£¬
n=1ʱ£¬a1=1£¬
¡àan=
2n-5£¬n¡Ý2
1£¬n=1
¡­£¨4·Ö£©
£¨2£©ÒªÊ¹
lim
n¡ú¡Þ
an
bn
=2£¬¿É¹¹ÔìÊýÁÐbn=n-k£¬
¡ß¶ÔÈÎÒâµÄÕýÕûÊýn¶¼ÓÐbn£¼an£¬
¡àµ±n¡Ý2ʱ£¬n-k£¼2n-5ºã³ÉÁ¢£¬¼´n£¾5-kºã³ÉÁ¢£¬¼´5-k£¼2£¬
¡àk£¾3£¬
ÓÖbn¡Ù0£¬¡àk∉N*£¬¡àbn=n-
7
2
£¬µÈµÈ£®        ¡­£¨10·Ö£©
£¨3£©ÓÉÌâÉècn=
-3£¬n=1
1-
4
2n-5
£¬n¡Ý2
£¬
µ±n¡Ý2ʱ£¬cn•cn+1£¼0£¬¿ÉµÃ
3
2
£¼n£¼
5
2
»ò
7
2
£¼n£¼
9
2
£¬
¡àn=2»òn=4£»¡­£¨14·Ö£©
ÓÖ¡ßc1=-3£¬c2=5£¬¡àn=1ʱҲÓÐc1•c2£¼0£®
×ÛÉϵàÊýÁÐ{cn}¹²ÓÐ3¸ö±äºÅÊý£¬¼´±äºÅÊýΪ3£®   ¡­£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬¿¼²éÊýÁеÄͨÏ¿¼²éж¨Ò壬½âÌâµÄ¹Ø¼üÊÇÀí½âж¨Ò壬ÅжÏÊýÁеĵ¥µ÷ÐÔ£¬´Ó¶øÈ·¶¨ÊýÁеıäºÅÊý£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Å×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬ÒÑÖªµãA£¬BΪÅ×ÎïÏßÉϵÄÁ½¸ö¶¯µã£¬ÇÒÂú×ã¡ÏAFB=60¡ã£¬¹ýµãABµÄÖеãM×÷Å×ÎïÏß×¼ÏߵĴ¹ÏßMN£¬´¹×ãΪN£®Ôò
|MN|
|AB|
µÄ×î´óֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ax3-bx2+9x+2£¬Èôf£¨x£©ÔÚx=1´¦µÄÇÐÏß·½³ÌΪ3x+y-6=0£®
£¨¢ñ£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©Èô¶ÔÈÎÒâµÄx¡Ê[
1
4
£¬2]¶¼ÓÐf£¨x£©¡Ýt2-2t-1³ÉÁ¢£¬Çóº¯Êýg£¨t£©=t2+t-2µÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=|x-2|£¬g£¨x£©=-|x+3|+m£®
£¨¢ñ£©Èô¹ØÓÚxµÄ²»µÈʽg£¨x£©¡Ý0µÄ½â¼¯Îª{x|-5¡Üx¡Ü-1}£¬ÇóʵÊýmµÄÖµ£»
£¨¢ò£©Èôf£¨x£©£¾g£¨x£©¶ÔÓÚÈÎÒâµÄx¡ÊRºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ΪÁËÐû´«¡°µÍ̼Éú»î¡±£¬À´×ÔÈý¸ö²»Í¬Éú»îÐ¡ÇøµÄ3ÃûÖ¾Ô¸ÕßÀûÓÃÖÜÄ©ÐÝϢʱ¼äµ½ÕâÈý¸öÐ¡Çø½øÐÐÑݽ²£¬Ã¿¸öÖ¾Ô¸ÕßËæ»úµØÑ¡ÔñÈ¥Ò»¸öÉú»îÐ¡Çø£¬ÇÒÿ¸öÉú»îÐ¡ÇøÖ»È¥Ò»¸öÈË£®
£¨1£©Çó¼×Ç¡ºÃÈ¥×Ô¼ºËùÉú»îÐ¡ÇøÐû´«µÄ¸ÅÂÊ£»
£¨2£©Çó3È˶¼Ã»ÓÐÈ¥×Ô¼ºËùÉú»îµÄÐ¡ÇøÐû´«µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ex-x£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®
£¨1£©Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Éè²»µÈʽf£¨x£©£¾axµÄ½â¼¯ÎªP£¬ÈôM={x|
1
2
¡Üx¡Ü2}
£¬ÇÒM¡ÉP¡Ù∅£¬ÇóʵÊýaµÄȡֵ·¶Î§
£¨3£©ÒÑÖªn¡ÊN*£¬ÇÒSn=
¡Ò
n
0
f(x)dx
£¬ÊÇ·ñ´æÔڵȲîÊýÁÐ{an}ºÍÊ×ÏîΪf£¨1£©¹«±È´óÓÚ0µÄµÈ±ÈÊýÁÐ{bn}£¬Ê¹µÃSn=An+Bn£¨ÆäÖÐAn£¬Bn·Ö±ðÊÇÊýÁÐ{an}£¬{bn}µÄǰnÏîºÍ£©£¿Èô´æÔÚ£¬ÇëÇó³öÊýÁÐ{an}£¬{bn}µÄͨÏʽ£®Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèaΪʵÊý£¬º¯Êýf£¨x£©=x2e-x+2a£¬x¡ÊR£®
£¨¢ñ£©Çóf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©µ±x£¾0ʱ£¬ºãÓÐaex£¾x2£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬×¼ÏßÓëxÖá½»ÓÚµãM£¬¹ýMµãбÂÊΪkµÄÖ±ÏßlÓëÅ×ÎïÏßC½»ÓÚµÚÒ»ÏóÏÞÄÚµÄA£¬BÁ½µã£¬Èô|AM|=
5
4
|AF|£¬Ôòk=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèaΪʵ³£Êý£¬y=f£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬µ±x£¼0ʱ£¬f£¨x£©=-x2-4x+2£¬Èôf£¨x£©¡Ýa+1¶ÔÒ»ÇÐx¡Ý0³ÉÁ¢£¬ÔòaµÄȡֵ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸