精英家教网 > 高中数学 > 题目详情
命题P:?x∈R,ax2+ax+1≥0为真命题,则实数a的取值范围是(  )
A、(0,4]
B、(-∞,4)∪(4,+∞)
C、(-∞,0]∪[4,+∞)
D、[0,4]
考点:全称命题
专题:分类讨论,简易逻辑
分析:根据题意,讨论a=0、a>0和a<0时,不等式解集的情况,从而求出a的取值范围.
解答: 解:根据题意,得;
a=0时,不等式为1≥0,满足题意;
a>0时,应△≤0,即a2-4a≤0,
解得0<a≤4;
a<0时,不满足题意;
综上,0≤a≤4;
∴实数a的取值范围是[0,4].
故选:D.
点评:本题通过全称命题,考查了不等式恒成立的问题,解题时应对字母系数进行分类讨论,以便得出正确的结论,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知等比数列{an}所有项均为正数,首项a1=1,且a4,3a3,a5成等差数列.
(1)求数列{an}的通项公式;
(2)数列{an+1-λan}的前n项和为Sn,若S6=63,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e2x2-1,若f[cos(
π
2
+θ)]=1,则θ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+2,g(x)=4x-1的定义域都是集合A,函数f(x)和g(x)的值域分别为S和T.
(1)若A=[1,2],求S∩T;
(2)若A=[0,m],且S⊆T,求实数m的取值范围;
(3)若对于A中的每一个x值,都有f(x)=g(x),求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
x-1
的定义域为集合M,函数g(x)=|3-x|-|x-1|的值域为N.
(1)求M,N;
(2)求M∪N,M∩∁RN.

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(π-α)=-
5
3
且α∈(π,
2
),则sin(
π
2
+
α
2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,向量
a
-
b
等于 (  )
A、-2
e1
-4
e2
B、-4
e1
-2
e2
C、
e1
-3
e2
D、-
e1
+3
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+f′(1)x2-x,则函数f(x)的图象在点(1,f(1))处的切线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知当x>1时,有f(3x)=3f(x);当1<x<3时,f(x)=3-x,记f(3n+2)=kn,则
n
i=1
ki=
 

查看答案和解析>>

同步练习册答案