精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+f′(1)x2-x,则函数f(x)的图象在点(1,f(1))处的切线方程是
 
考点:利用导数研究曲线上某点切线方程,导数的运算
专题:计算题,导数的概念及应用
分析:求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(1,f(1))处的切线方程.
解答: 解:∵函数f(x)=x3+f′(1)x2-x
∴f′(x)=3x2+2f′(1)x-1,
∴f′(1)=3+2f′(1)-1,
∴f′(1)=-2.
∴f(x)=x3-2x2-x,
∴f(1)=1-2-1=-2,
∴函数f(x)的图象在点(1,f(1))处的切线方程是y-(-2)=-2(x-1)
故答案为:2x+y=0.
点评:本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线x-y-2=0与曲线y=x2+mx+m有两个不同的公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题P:?x∈R,ax2+ax+1≥0为真命题,则实数a的取值范围是(  )
A、(0,4]
B、(-∞,4)∪(4,+∞)
C、(-∞,0]∪[4,+∞)
D、[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=
x-1
的定义域为集合M,函数g(x)=-x2+2x的值域为集合N,求:
(1)M,N
(2)求M∩N,M∪N.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
ax+1
(a<0且a为常数)在区间(-∞,1]上有意义,则实数a的取值范围(  )
A、[-1,0)
B、(-1,0)
C、[-1,0]
D、(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
2x2-2x-8
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形ABCD中,AB∥CD,AD=DC=CB=2,∠CBA=30°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=3.
(1)求证:BC⊥平面ACFE;
(2)设点M为EF中点,求二面角B-AM-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥S-ABCD中,底面正方形ABCD的边长为a,侧棱长为2a,M为SA中点,N为棱SC中点,求异面直线DM与BN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,E,F分别是棱AD,AA1的中点,则D1E和B1F所成的角的余弦值为(  )
A、
1
2
B、
3
5
C、
2
5
D、
10
10

查看答案和解析>>

同步练习册答案