定义:若在上为增函数,则称为“k次比增函数”,其中. 已知其中e为自然对数的底数.
(1)若是“1次比增函数”,求实数a的取值范围;
(2)当时,求函数在上的最小值;
(3)求证:.
(1) ;(2)详见解析;(3)详见解析.3.详见解析.
解析试题分析:(Ⅰ)由于是“1次比增函数”,得到在上为增函数,求导后,导数大于等于0,分离参数,转化为恒成立,求最值的问题,即可得到实数a的取值范围;
(Ⅱ)当时,得到函数,,利用导数即可得到的单调区间,分成,三种情况进行分类讨论即可函数在上单调性,进而得到其最小值;
(Ⅲ)由(Ⅱ)当时, ,即,则,即可证明:.,
试题解析:(1)由题意知上为增函数,因为在上
恒成立.又,则在上恒成立,
即在上恒成立. 而当时,,所以,
于是实数a的取值范围是. 4分
(2)当时,,则.
当,即时,;
当,即时,.
则的增区间为(2,+∞),减区间为(-∞,0),(0,2). 6分
因为,所以,
①当,即时,在[]上单调递减,
所以.
②当,即时,在上单调递减,
在上单调递增,所以.
③当时,在[]上单调递增,所以.
综上,当时,;
当时,;
当时,. 9分
(3)由(2)可知,当时,,所以,
可得
科目:高中数学 来源: 题型:解答题
据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18的A,B两家化工厂(污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设().
(1)试将表示为的函数; (2)若,且时,取得最小值,试求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
(1)当时,求的极大值点;
(2)设函数的图象与函数的图象交于、两点,过线段的中点做轴的垂线分别交、于点、,证明:在点处的切线与在点处的切线不平行.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;
(2)试求一个函数,使(为常数,)为广义周期函数,并求出它的一个广义周期和周距;
(3)设函数是周期的周期函数,当函数在上的值域为时,求在上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,曲线C1的参数方程为:(为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2是极坐标方程为:,
(1)求曲线C2的直角坐标方程;
(2)若P,Q分别是曲线C1和C2上的任意一点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是单调函数,求a的取值范围;
(3)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com