8£®ÒÑÖªÔ²C£º$\left\{{\begin{array}{l}{x=1+\sqrt{2}cos¦È}\\{y=1-\sqrt{2}sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©ºÍÖ±Ïß$l£º\left\{{\begin{array}{l}{x=-1+tcos¦Á}\\{y=1+tsin¦Á}\end{array}}\right.$£¨ÆäÖÐtΪ²ÎÊý£¬¦ÁΪֱÏßlµÄÇãб½Ç£©£®
£¨¢ñ£©ÇóÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©Èç¹ûÖ±ÏßlÓëÔ²CÓй«¹²µã£¬Çó¦ÁµÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©ÀûÓÃͬ½ÇÈý½Çº¯Êý»ù±¾¹ØÏµÊ½ÏûÈ¥²ÎÊý¦È£¬¼´¿ÉµÃµ½Ô²CµÄ±ê×¼·½³Ì£®
£¨¢ò£©ÏûÈ¥²ÎÊýtµÃµ½Ö±Ïß·½³Ì£®Çó³öÔ²µÄÔ²ÐÄÓë°ë¾¶£¬ÀûÓÃÔ²Ðĵ½Ö±ÏߵľàÀëÓë°ë¾¶µÄ¹ØÏµ£¬Áгö²»µÈʽÇó½â¼´¿É£®

½â´ð ½â£º£¨¢ñ£©Ô²C£º$\left\{{\begin{array}{l}{x=1+\sqrt{2}cos¦È}\\{y=1-\sqrt{2}sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÏûÈ¥¦È¿ÉµÃ£º£¨x-1£©2+£¨y-1£©2=2£¬
¼´x2+y2-2x-2y=0£¬¦Ñ2-2¦Ñcos¦È-2¦Ñsin¦È=0£®
ËùÒÔ$¦Ñ=2\sqrt{2}sin£¨¦È+\frac{¦Ð}{4}£©$¡­£¨5·Ö£©
£¨¢ò£©µ±$¦Á=\frac{¦Ð}{2}$ʱ£¬Ö±ÏßÓëԲûÓй«¹²µã
µ±$¦Á¡Ù\frac{¦Ð}{2}$ʱ£¬Ö±Ïß·½³ÌΪy-1=tan¦Á£¨x+1£©¼´tan¦Á•x-y+£¨tan¦Á+1£©=0
µ±Ö±ÏßÓëÔ²Óй«¹²µãʱ£¬$\frac{|2tan¦Á|}{{\sqrt{{{tan}^2}¦Á+1}}}¡Ü\sqrt{2}$£¬½âµÃ-1¡Ütan¦Á¡Ü1
¡ß¦Á¡Ê[0£¬¦Ð£©£¬¡à¦ÁµÄȡֵ·¶Î§ÊÇ$[0£¬\frac{¦Ð}{4}]¡È[\frac{3¦Ð}{4}£¬¦Ð£©$£®     ¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÔ²µÄ²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯£¬ÆÕͨ·½³ÌÓë¼«×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èôº¯Êýy=-$\frac{4}{3}$x3+£¨b-1£©xÓÐÈý¸öµ¥µ÷Çø¼ä£¬ÔòbµÄȡֵ·¶Î§ÊÇb£¾1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®º¯Êýf£¨x£©=x-4lnxµÄµ¥µ÷¼õÇø¼äΪ£¨0£¬4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬¡÷ABCµÄ½Çƽ·ÖÏßAD½»Íâ½ÓÔ²ÓÚD£¬BEΪԲµÄÇÐÏߣ¬ÇóÖ¤£ºDµ½BC£¬BEµÄ¾àÀëÏàµÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÉèµãAÊÇÇúÏßC£º$\left\{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}\right.$£¬£¨¦ÈΪ²ÎÊý£©Éϵ͝µã£¬µãBÊÇÖ±Ïßl£º$\left\{\begin{array}{l}{x=2-t}\\{y=-1-2t}\end{array}\right.$£¬£¨tΪ²ÎÊý£©Éϵ͝µã
£¨1£©ÇóÇúÏßCÓëÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÇóA£¬BÁ½µãµÄ×îС¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªm£¾0£¬º¯Êýf£¨x£©=$\frac{1}{2}{x^2}$-mlnx£¬g£¨x£©=x2-£¨m+1£©x+1£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©ÃüÌâp£ºf£¨x£©ÔÚÇø¼ä[3£¬+¡Þ£©ÉÏΪÔöº¯Êý£»ÃüÌâq£º¹ØÓÚxµÄ·½³Ìg£¨x£©=0ÓÐʵ¸ù£®Èô£¨?p£©¡ÄqÊÇÕæÃüÌ⣬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬¹ýÔ²ÍâÒ»µãP×÷Ô²µÄÁ½ÌõÇÐÏßPA¡¢PB£¬A£¬BΪÇе㣬ÔÙ¹ýPµã×÷Ô²µÄÒ»Ìõ¸îÏß·Ö±ðÓëÔ²½»ÓÚµãC¡¢D£¬¹ýABÉÏÈÎÒ»µãQ×÷PAµÄƽÐÐÏß·Ö±ðÓëÖ±ÏßAC¡¢AD½»ÓÚµãE£¬F£¬Ö¤Ã÷£ºQE=QF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=£¨x2-k£©ex£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£¬e=2.71828£¬k¡ÊR£©£®
£¨1£©µ±k=3ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äºÍ¼«Öµ£»
£¨2£©Èô¶ÔÓÚÈÎÒâx¡Ê[1£¬2]£¬¶¼ÓÐf£¨x£©£¼2x³ÉÁ¢£¬ÇókµÄȡֵ·¶Î§£»
£¨3£©Çóº¯Êýy=f£¨x£©ÔÚx¡Ê[0£¬1]ÉϵÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¼ºÖª£ºÈçͼ£¬ËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDΪÁâÐΣ¬¡ÏBAD=60¡ã£¬²àÃæPAD¡Íµ×ÃæABCD£¬PA=PD£®
£¨1£©Ö¤Ã÷£ºPB¡ÍCB£»
£¨2£©ÉèEΪCDµÄÖе㣬PEÓëµ×ÃæABCDËù³É½ÇΪ45¡ã£¬ÇóÆ½ÃæPADÓëÆ½ÃæPBEËù³É¶þÃæ½Ç£¨Èñ½Ç£©µÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸