精英家教网 > 高中数学 > 题目详情
19.函数f(x)=x-4lnx的单调减区间为(0,4).

分析 函数的单调减区间就是函数的导数小于零的区间,可以先算出函数f(x)=x-4lnx的导数,再解不等式f′(x)<0,可得出函数的单调减区间.

解答 解:求出函数f(x)=x-4lnx的导数:f′(x)=$\frac{x-4}{x}$
而函数的单调减区间就是函数的导数小于零的区间
由f′(x)<0,得(0,4)
因为函数的定义域为(0,+∞)
所以函数的单调减区间为(0,4).
故答案为:(0,4).

点评 本题的考点是利用导数研究函数的单调性,解题的关键是求导函数,在做题时应该避免忽略函数的定义域而导致的错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{3}{2}$(ω∈R)的最小正周期为π,且图象关于直线x=$\frac{π}{6}$对称.
(1)求f(x)的解析式;
(2)若函数g(x)=f(-x))+a(0$≤x≤\frac{π}{2}$)有且只有一个零点,求实数a的取值范围;
(3)若x1,x2是(2)中函数g(x)的两个不同零点,求证:x1+x2=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,圆O的弦CD垂直于直径AB,垂足为H,HB=2CD,AH=1cm.求弦CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知三棱锥P-ABC中,底面△ABC是边长为3的等边三角形,侧棱长都相等,半径为$\sqrt{7}$的球O过三棱锥P-ABC的四个顶点,则点P到面ABC的距离为$\sqrt{7}±2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立极坐标系,取相同的长度单位,已知曲线C的极坐标方程为ρ=2$\sqrt{5}$sinθ,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程.
(Ⅱ)若P(3,$\sqrt{5}$),直线l与曲线C相交于M,N两点,求|PM|+|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{|lgx|,x>0}\\{1-{x}^{2},x≤0}\end{array}\right.$,则方程f(x2-2x)=a(a≥0)的不同实数根的个数不可能为(  )
A.3B.4C.5D.6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=-$\frac{1}{3}}$x3+$\frac{5}{2}}$x2-6x+5的单调增区间是(  )
A.(-∞,2)和(3,+∞)B.(2,3)C.(-1,6)D.(-3,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C:$\left\{{\begin{array}{l}{x=1+\sqrt{2}cosθ}\\{y=1-\sqrt{2}sinθ}\end{array}}\right.$(θ为参数)和直线$l:\left\{{\begin{array}{l}{x=-1+tcosα}\\{y=1+tsinα}\end{array}}\right.$(其中t为参数,α为直线l的倾斜角).
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)如果直线l与圆C有公共点,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{3}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$且方程f(x)=ax恰有两个不同的实根,则实数a的取值范围是[$\frac{1}{3}$,$\frac{1}{e}$).

查看答案和解析>>

同步练习册答案