精英家教网 > 高中数学 > 题目详情

已知函数为实常数).
(1)若,求函数的单调区间;
(2)设在区间上的最小值为,求的表达式.

(1)的单调递减区间为 和
(2).

解析试题分析:(1)根据绝对值的含义,取绝对值符号写出函数的分段形式;
(2)根据二次函数的对称轴方程与区间位置,分类讨论求最小值的解析式.
(1)
的单调递减区间为 和
(2)当时,,在上单调递减,
所以当时,
时,.
(ⅰ)当,即时,此时上单调递增,所以时,
(ⅱ)当,即时,当时, ;
(ⅲ)当,即时,此时上单调递减,所以时,
时,,此时上单调递减,所以时,.
综上:
考点:二次函数的性质;函数的图象与图象变化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

甲、乙两个工厂,甲厂位于一直线河岸的岸边处,乙厂与甲厂在河的同侧,乙厂位于离河岸40千米的处,乙厂到河岸的垂足相距50千米,两厂要在此岸边之间合建一个供水站,从供水站到甲厂和乙厂的水管费用分别为每千米3元和5元,若千米,设总的水管费用为元,如图所示,
(1)写出关于的函数表达式;
(2)问供水站建在岸边何处才能使水管费用最省? 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
⑴若不等式对任意恒成立,求实数的最值范围;
⑵若,且函数的定义域和值域均为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是定义在上的函数,且,对任意,若经过点的直线与轴的交点为,则称关于函数的平均数,记为,例如,当时,可得,即的算术平均数.
时,的几何平均数;
时,的调和平均数
(以上两空各只需写出一个符合要求的函数即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元.
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:Q(x)=170-0.05x,试问生产多少件产品时,总利润最高?(总利润=总销售额-总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(是自然对数的底数,),且
(1)求实数的值,并求函数的单调区间;
(2)设,对任意,恒有成立.求实数的取值范围;
(3)若正实数满足,试证明:;并进一步判断:当正实数满足,且是互不相等的实数时,不等式是否仍然成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。

(1)写出的表达式
(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若lga+lgb=0(a≠1),则函数f(x)=ax与g(x)=-bx的图象关于________对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=logax(a>0且a≠1),如果对于任意的x∈都有|f(x)|≤1成立,试求a的取值范围.

查看答案和解析>>

同步练习册答案