已知函数(为实常数).
(1)若,求函数的单调区间;
(2)设在区间上的最小值为,求的表达式.
科目:高中数学 来源: 题型:解答题
甲、乙两个工厂,甲厂位于一直线河岸的岸边处,乙厂与甲厂在河的同侧,乙厂位于离河岸40千米的处,乙厂到河岸的垂足与相距50千米,两厂要在此岸边之间合建一个供水站,从供水站到甲厂和乙厂的水管费用分别为每千米3元和5元,若千米,设总的水管费用为元,如图所示,
(1)写出关于的函数表达式;
(2)问供水站建在岸边何处才能使水管费用最省?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设是定义在上的函数,且,对任意,若经过点,的直线与轴的交点为,则称为关于函数的平均数,记为,例如,当时,可得,即为的算术平均数.
当时,为的几何平均数;
当时,为的调和平均数;
(以上两空各只需写出一个符合要求的函数即可)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元.
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:Q(x)=170-0.05x,试问生产多少件产品时,总利润最高?(总利润=总销售额-总成本)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设(是自然对数的底数,),且.
(1)求实数的值,并求函数的单调区间;
(2)设,对任意,恒有成立.求实数的取值范围;
(3)若正实数满足,,试证明:;并进一步判断:当正实数满足,且是互不相等的实数时,不等式是否仍然成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。
(1)写出的表达式
(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com