分析 (1)由正弦定理,两角和的正弦函数公式,三角形内角和定理化简已知可得sinB=2sinBcosB,结合范围B∈(0,π),可求cosB=$\frac{1}{2}$,进而可求B的值.
(2)由余弦定理可得:b2=a2+c2-ac,结合已知可求a2+c2-ac=a2-$\frac{1}{4}$c2,整理可得:$\frac{a}{c}$=$\frac{5}{4}$,利用由正弦定理即可得解.
解答 解:(1)∵$\frac{acosC+ccosA}{b}$=2cosB,
∴acosC+ccosA=2bcosB,由正弦定理可得:sinAcosC+sinCcosA=2sinBcosB,
∴sinB=2sinBcosB,
∵B∈(0,π),sinB≠0,
∴cosB=$\frac{1}{2}$,可得:B=$\frac{π}{3}$.
(2)∵B=$\frac{π}{3}$,由余弦定理可得:b2=a2+c2-ac,
又∵a2=b2+$\frac{1}{4}$c2,可得:b2=a2-$\frac{1}{4}$c2,
∴a2+c2-ac=a2-$\frac{1}{4}$c2,整理可得:$\frac{a}{c}$=$\frac{5}{4}$,
∴由正弦定理可得:$\frac{sinA}{sinC}$=$\frac{a}{c}$=$\frac{5}{4}$.
点评 本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2+y2-2x-6y+9=0 | B. | x2+y2+6x+2y+9=0 | C. | x2+y2-6x-2y+9=0 | D. | x2+y2+2x+6y+9=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[kπ+\frac{3π}{8},kπ+\frac{7π}{8}],k∈Z$ | B. | $[2kπ+\frac{3π}{8},2kπ+\frac{7π}{8}],k∈Z$ | ||
| C. | $[2kπ-\frac{π}{8},2kπ+\frac{3π}{8}],k∈Z$ | D. | $[kπ-\frac{π}{8},kπ+\frac{3π}{8}],k∈Z$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 21 | B. | $\frac{43}{2}$ | C. | $\frac{45}{2}$ | D. | 23 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com