分析 由题意作BE垂直BP,使BE=BP(点E和P在BC两侧),连接PE,CE,作CH垂直BE的延长线于H,则∠CEH=180°-∠BEC=45°.进一步由勾股定理求得答案即可.
解答
解:作BE垂直BP,使BE=BP(点E和P在BC两侧),连接PE,CE.
则:∠BPE=∠BEP=45°;PE2=BE2+BP2=4+4=8;
∵∠EBP=∠CBA=90°.
∴∠EBC=∠PBA;又BE=BP,BC=BA.
∴△EBC≌△PBA(SAS),CE=AP=1.
∵PE2+CE2=8+1=9; PC2=32=9.
∴PE2+CE2=PC2,则∠PEC=90°,∠BEC=∠BEP+∠PEC=135°;
作CH垂直BE的延长线于H,则∠CEH=180°-∠BEC=45°.
∴CH=EH=$\frac{\sqrt{2}}{2}$,BH=BE+EH=2+$\frac{\sqrt{2}}{2}$.
故S正方形ABCD=BC2=BH2+CH2=(2+$\frac{\sqrt{2}}{2}$)2+($\frac{\sqrt{2}}{2}$)2=5+2$\sqrt{2}$,
故答案为5+2$\sqrt{2}$.
点评 此题考查正方形的性质,勾股定理的运用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6-$\frac{π}{8}$ | B. | 6-$\frac{π}{4}$ | C. | 6+$\frac{π}{8}$ | D. | 6+$\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 平行于同一条直线的两条直线平行 | |
| B. | 如果一条直线上的两点在一个平面内,那么这条直线在此平面内 | |
| C. | 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 | |
| D. | 如果两个角的两边分别平行,则这两个角相等或互补 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com