精英家教网 > 高中数学 > 题目详情
6.集合A={0,1,2},B={x|x=3-2a,a∈A},则A∩B=(  )
A.{1}B.{1,2}C.{0,1,2}D.

分析 由题意求出集合B,由交集的运算求出A∩B.

解答 解:∵集合A={0,1,2},B={x|x=3-2a,a∈A},
∴集合B={3,1,-1},
则A∩B={1},
故选A.

点评 本题考查了交集及其运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某班级将从甲、乙两位同学中选派一人参加数学竞赛,老师对他们平时的5次模拟测试成绩(满分:100分)进行了记录,其统计数据的茎叶图如图所示,已知甲、乙两位同学的平均成绩都为90分.
(Ⅰ)求出a,b的值;
(Ⅱ)分别计算这两组数据的方差,并根据统计学知识,请你判断选派哪位学生参加合适?
(Ⅲ)从甲同学的5次成绩中任取两次,若两次成绩的平均分大于90,则称这两次成绩为“优秀组合”,求甲同学的两次成绩为“优秀组合”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=kx2-2x+4k.
(1)若函数f(x)在R上恒小于零,求实数k的取值范围;
(2)若函数f(x)在区间[2,4]上单调递减,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.平面截球得到的半径是3的圆面,球心到这个平面的距离是4,则该球的表面积是(  )
A.20πB.$\frac{416\sqrt{3}π}{3}$C.$\frac{500π}{3}$D.100π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(x,4),若$\overrightarrow{a}$$•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,则x=(  )
A.-2B.2C.0D.-2或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是平面上的三个单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,则(2$\overrightarrow{a}$+$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)的最小值是(  )
A.-2B.-1C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图所示,已知点P为正方形ABCD内一点,且AP=1,BP=2,CP=3,则该正方形ABCD的面积为5+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设△ABC的内角A、B、C的对边分别为a、b、c,若a=1,c=$\sqrt{3}$,cosA=$\frac{\sqrt{3}}{2}$,且b<c,则b=(  )
A.1B.$\frac{\sqrt{3}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个几何体的三视图是如图所示的边长为2的正方形,其中P,Q,S,T为各边的中点,则此几何体的表面积是(  )
A.21B.$\frac{43}{2}$C.$\frac{45}{2}$D.23

查看答案和解析>>

同步练习册答案