精英家教网 > 高中数学 > 题目详情

【题目】对于函数fx),若存在区间M[ab]ab)使得{y|yfx),xM}M,则称区间M为函数fx)的一个稳定区间,给出下列四个函数:

fx,②fx)=x3,③fx)=cosx,④fx)=tanx

其中存在稳定区间的函数有(

A.①②③B.②③C.③④D.①④

【答案】A

【解析】

根据函数的单调性依次计算每个函数对应的值域判断得到答案.

fx,取时,如图所示:函数在上单调递增,且,故满足;

fx)=x3,函数单调递增,取,故满足;

fx)=cosx,函数在上单调递减,,故满足;

fx)=tanx,函数在每个周期内单调递增,在每个周期内没有两个交点,如图所示,故不满足;

故选:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》中盈不足章中有这样一则故事:今有良马与驽马发长安,至齐. 齐去长安三千里. 良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.为了计算每天良马和驽马所走的路程之和,设计框图如下图. 若输出的 的值为 350,则判断框中可填( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆轴交于两点,动直线)与轴、轴分别交于点,与圆交于两点(点纵坐标大于点纵坐标).

1)若,点与点重合,求点的坐标;

2)若,求直线将圆分成的劣弧与优弧之比;

3)若,设直线的斜率分别为,是否存在实数使得?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求在区间上的最大值和最小值;

2)若对恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

1)若圆的切线在轴、轴上的截距相等,求切线方程;

2)从圆外一点向该圆引一条切线,切点为,且有为坐标原点),求使取得最小值时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,近日我渔船编队在岛周围海域作业,在岛的南偏西20°方向有一个海面观测站,某时刻观测站发现有不明船只向我渔船编队靠近,现测得与相距31海里的处有一艘海警船巡航,上级指示海警船沿北偏西40°方向,以40海里/小时的速度向岛直线航行以保护我渔船编队,30分钟后到达处,此时观测站测得间的距离为21海里.

(Ⅰ)求的值;

(Ⅱ)试问海警船再向前航行多少分钟方可到岛

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=cosxacosxsinxaR),且f .

1)求a的值;

2)求fx)的单调递增区间;

3)求fx)在区间[0]上的最小值及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设是平面内相交成角的两条数轴 ,分别是轴,轴正方向同向的单位向量,若向量,则把有序数对叫做向量在坐标系中的坐标,假设.

(1)计算的大小;

(2)设向量,若共线,求实数的值;

(3)是否存在实数,使得与向量垂直,若存在求出的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆M 的离心率与双曲线的离心率互为倒数,且内切于圆

(1)求椭圆M的方程;

(2)已知是椭圆M的下焦点,在椭圆M上是否存在点P,使的周长最大?若存在,请求出周长的最大值,并求此时的面积;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案