精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin22x+
3
sin2x•cos2x.
(1)求函数f(x)的最小正周期;
(2)若x∈[
π
8
π
4
],求f(x)的值域.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(1)化简函数f(x)的解析式,由三角函数的周期性及其求法即可求出函数f(x)的最小正周期;
(2)根据x的取值范围,求出4x-
π
6
的取值范围,从而可求f(x)的值域.
解答: 解:(1)∵f(x)=sin22x+
3
sin2x•cos2x=
1-cos4x
2
+
3
2
sin4x=sin(4x-
π
6
+
1
2

∴T=
4
=
π
2

即函数f(x)的最小正周期为
π
2

(2)∵x∈[
π
8
π
4
],
∴4x-
π
6
∈[
π
3
6
],
∴sin(4x-
π
6
)∈[
1
2
,1],
∴sin(4x-
π
6
+
1
2
∈[1,
3
2
],
∴f(x)的值域为[1,
3
2
].
点评:本题主要考察了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数的图象与性质,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=-
3
,α∈(
π
2
,π),则cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
夹角60°,|
e1
|=|
e2
|=1,
a
=2
e1
+
e2
b
=-3
e1
+2
e2
,则
a
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(ω,2),
b
=(-1,1).
(1)若|
a
|=
2
|
b
|,求ω的值;
(2)若<
a
b
>=60°,求向量
a

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,内角A、B、C对边分别为a、b、c.已知
b
a+c
+
sinC
sinA+sinB
=1.
(l)求A;(2)若b=5,
CA
CB
=-5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1,a2,…,an为正整数,其中至少有五个不同值,若对任意的i,j(1≤i<j≤n),存在k,l(k≠l,且异于i与j)使得ai+aj=ak+al,则n的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3-ax2+3x,g(x)=lnx+b
(Ⅰ)若曲线h(x)=
f(x)
x
+g(x)在x=1处的切线是x+y=0,求实数a和b的值;
(Ⅱ)若x=3是f(x)的极值点,求f(x)在[0,2]上的最大最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的一个顶点为(0,2),离心率为e=
1
2
,以坐标轴为对称轴的椭圆方程是(  )
A、
3
16
x2+
y2
4
=1
B、
y2
4
+
x2
3
=1
C、
3
16
x2+
y2
4
=1或
y2
4
+
x2
3
=1
D、
y2
8
+
y2
4
=1或
y2
4
+
x2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵相距3米,开始时需将树苗集中放在某一树坑旁边,现将树坑从1至20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为
 
.若集中放在两个树坑旁边(每坑旁10棵树苗),则最佳坑位编号又分别为
 
 

查看答案和解析>>

同步练习册答案