精英家教网 > 高中数学 > 题目详情
(本题满分12分)
如图,已知直角梯形的上底,平面平面是边长为的等边三角形。
(1)证明:
(2)求二面角的大小。
(3)求三棱锥的体积。
解:(1)在直角梯形中,因为
所以
因为,平面平面,平面平面,所以平面,因此在中,
因为所以平面,所以在中,

所以在中,,所以
(2)设线段的中点为,连接
因为是等边三角形,所以
因为平面平面,平面平面,所有平面,因此,由(1)知,所以平面,所以,因此就是二面角的平面角,在中,
,所以
(3)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四边形都是边长为的正方形,点E是的中点,
(1) 求证:平面BDE;
(2) 求证:平面⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱锥中,,底面为正方形,分别是的中点.
(1) 求证: ;
(2)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:在正方体ABCDA1B1C1D1中,MNP分别为所在边的中点,O为面对角线A1C1的中点.
(1) 求证:面MNP∥面A1C1B;(2) 求证:MO⊥面A1C1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知直角梯形中(如图1),的中点,
沿折起,使面(如图2),点在线段上,.
(1)求异面直线所成角的余弦值;
(2)求二面角的余弦值;
(3)在四棱锥的棱上是否存在一点,使得平面,若存在,求出点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )
A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知矩形ABCD中,AB=6,BC=,E为AD的中点(图一)。沿BE将△ABE折起,使二面角A—BE—C为直二面角(图二),且F为AC的中点。
(1)求证:FD//平面ABE;
(2)求二面角E-AB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则,推广到空间可以得到类似结论;已知正四面体P—ABC的内切球体积为V1,外接球体积为V2,则         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,为圆的直径,点在圆上,,矩形所在平面和圆所在的平面互相垂直.
(Ⅰ)求证:AD∥平面BCF
(Ⅱ)求证:平面平面

查看答案和解析>>

同步练习册答案