分析 (1)把不等式f(x)>0恒成立转化为ax2-$\frac{a}{2}$+1>0恒成立,分离参数a后得到a$>\frac{-1}{{x}^{2}-\frac{1}{2}}$,求出不等式右边在[1,2)上的最大值得答案;
(2)当a>0时,对任意的x1∈[1,2],存在x2∈[1,2],使得f(x1)≥g(x2)恒成立,等价于f(x)min≥g(x)min在区间[1,2]上成立,利用单调性求出f(x)的最小值,再分段求出g(x)的最小值,列关于a的不等式组求得答案.
解答 解:(1)f(x)>0?ax2-$\frac{a}{2}$+1>0⇒a$>\frac{-1}{{x}^{2}-\frac{1}{2}}$在x∈[1,2)上恒成立,
∵x∈[1,2),∴x2∈[1,4),${x}^{2}-\frac{1}{2}$∈[$\frac{1}{2}$,$\frac{7}{2}$),则$\frac{-1}{{x}^{2}-\frac{1}{2}}$∈[-2,$-\frac{2}{7}$),
∴a$≥-\frac{2}{7}$,
则a的取值范围是[$-\frac{2}{7},+∞$);
(2)当a>0时,对任意的x1∈[1,2],存在x2∈[1,2],使得f(x1)≥g(x2)恒成立,
等价于f(x)min≥g(x)min在区间[1,2]上成立,
当a>0时,函数f(x)在[1,2]上单调递增,∴$f(x)_{min}=f(1)=1+\frac{a}{2}$,
$g(x)_{min}=\left\{\begin{array}{l}{1+a,0<a<1}\\{2\sqrt{2}a,1≤a≤4}\\{2+\frac{a}{2},a>4}\end{array}\right.$,
故$\left\{\begin{array}{l}{0<a<1}\\{1+a≤1+\frac{a}{2}}\end{array}\right.$①,或$\left\{\begin{array}{l}{a>4}\\{2+\frac{a}{2}≤1+\frac{a}{2}}\end{array}\right.$②或$\left\{\begin{array}{l}{1≤a≤4}\\{2\sqrt{a}≤1+\frac{a}{2}}\end{array}\right.$③.
解①得,a∈∅;解②得,a∈∅;解③得1≤a≤4.
综上,a的取值范围为[1,4].
点评 本题考查函数恒成立问题,考查了数学转化思想方法,训练了分离变量法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com