精英家教网 > 高中数学 > 题目详情
8.已知sinα=$\frac{5}{13}$,α是第一象限角,则cos(π-α)的值为$-\frac{12}{13}$.

分析 由已知求得cosα,再由诱导公式得答案.

解答 解:∵sinα=$\frac{5}{13}$,α是第一象限角,
∴cosα=$\sqrt{1-(\frac{5}{13})^{2}}=\frac{12}{13}$.
∴cos(π-α)=-cosα=$-\frac{12}{13}$.
故答案为:$-\frac{12}{13}$.

点评 本题考查三角函数的化简求值,考查了同角三角函数的基本关系式及诱导公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2-x,g(x)=$\frac{x+1}{x}$,若F(x)=f(x)•g(x),则函数F(x)的奇偶性是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2-$\frac{a}{2}$+1,g(x)=x+$\frac{a}{x}$.
(1)f(x)>0在x∈[1,2)上恒成立,求a的取值范围;
(2)当a>0时,对任意的x1∈[1,2],存在x2∈[1,2],使得f(x1)≥g(x2)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.曲线y=xex+1在点(1,e+1)处的切线方程是(  )
A.2ex-y-e+1=0B.2ey-x+e+1=0C.2ex+y-e+1=0D.2ey+x-e+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\frac{x+a}{x+1}$,M={x|f(x)<0},P={x|f′(x)>0},若M?P,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.双曲线$\frac{x^2}{5}$-$\frac{{y{\;}^2}}{4}$=1的焦点坐标为(  )
A.(3,0)和(-3,0)B.(2,0)和(-2,0)C.(0,3)和(0,-3)D.(0,2)和(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于x的不等式ax2+bx-2>0的解集是(-∞,-$\frac{1}{2}}$)∪(${\frac{1}{3}$,+∞),则ab等于24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.把函数y=cosx的图象向左平移$\frac{π}{4}$个单位,所有点的横坐标缩小到原来的一半,纵坐标扩大到原来的两倍,所得图形表示的函数的解析式为y=2cos(2x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,A,B,C的对边分别为a,b,c,且($\overrightarrow{AB}$)2=$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc对任意的满足题意的a,b,c都成立,求k的取值范围.

查看答案和解析>>

同步练习册答案