精英家教网 > 高中数学 > 题目详情
18.△ABC中,A,B,C的对边分别为a,b,c,且($\overrightarrow{AB}$)2=$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc对任意的满足题意的a,b,c都成立,求k的取值范围.

分析 (Ⅰ)($\overrightarrow{AB}$)2=$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$.可得c2=bccosA+accosb+abcosc,利用余弦定理化简即可判断出结论.
(Ⅱ)在直角△ABC中,a=csinA,b=ccosA.由a2(b+c)+b2(c+a)+c2(a+b)≥kabc,对任意的满足题意的a、b、c都成立,则$\frac{{a}^{2}(b+c)+{b}^{2}(c+a)+{c}^{2}(a+b)}{abc}$≥k,对任意的满足题意的a、b、c都成立,利用正弦定理化为:$\frac{{a}^{2}(b+c)+{b}^{2}(c+a)+{c}^{2}(a+b)}{abc}$=cosA+sinA+$\frac{1+cosA+sinA}{sinAcosA}$,令t=sinA+cosA,t∈$(1,\sqrt{2}]$,设f(t)=$\frac{{a}^{2}(b+c)+{b}^{2}(c+a)+{c}^{2}(a+b)}{abc}$=t+$\frac{1+t}{\frac{{t}^{2}-1}{2}}$,变形利用基本不等式的性质即可得出.

解答 解:(Ⅰ)∵($\overrightarrow{AB}$)2=$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$.
∴c2=bccosA+accosb+abcosc,
由余弦定理知:c2=bccosA+accosb+abcosc=$\frac{{{b^2}+{c^2}-{a^2}}}{2}$+$\frac{{{a^2}+{c^2}-{b^2}}}{2}$+$\frac{{{a^2}+{b^2}-{c^2}}}{2}$=$\frac{{{a^2}+{b^2}+{c^2}}}{2}$
从而a2+b2=c2,∴△ABC 是以C为直角顶点的直角三角形.
(Ⅱ)在直角△ABC中,a=csinA,b=ccosA.
若a2(b+c)+b2(c+a)+c2(a+b)≥kabc,对任意的满足题意的a、b、c都成立,
则$\frac{{a}^{2}(b+c)+{b}^{2}(c+a)+{c}^{2}(a+b)}{abc}$≥k,对任意的满足题意的a、b、c都成立,
∵$\frac{{a}^{2}(b+c)+{b}^{2}(c+a)+{c}^{2}(a+b)}{abc}$≥k,
=$\frac{1}{{c}^{3}sinAcosA}$[c2sin2A(ccosA+c)+c2cos2A(csinA+c)+c2(csinA+ccosA)]
=$\frac{1}{sinAcosA}$[sin2AcosA+cos2A sinA+1+cosA+sinA]=cosA+sinA+$\frac{1+cosA+sinA}{sinAcosA}$
令t=sinA+cosA,t∈$(1,\sqrt{2}]$,
设f(t)=$\frac{{a}^{2}(b+c)+{b}^{2}(c+a)+{c}^{2}(a+b)}{abc}$=t+$\frac{1+t}{\frac{{t}^{2}-1}{2}}$=t+$\frac{2}{t-1}$=t-1+$\frac{2}{t-1}$+1.
f(t)=t-1+$\frac{2}{t-1}$+1,当t-1∈$(0,\sqrt{2}-1]$时f(t)为单调递减函数,
∴当t=$\sqrt{2}$时取得最小值,最小值为2+3$\sqrt{2}$,即k≤2+3$\sqrt{2}$.
∴k的取值范围为(-∞,2+3$\sqrt{2}$].

点评 本题考查了正弦定理余弦定理、基本不等式的性质、函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知sinα=$\frac{5}{13}$,α是第一象限角,则cos(π-α)的值为$-\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数列{an}和{bn}的每一项都是正数,且a1=8,b1=16,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列.
(Ⅰ)求a2,b2的值;
(Ⅱ)求数列{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(ax2+x+2)ex(a>0),其中e是自然对数的底数.
(1)当a=2时,求f(x)的极值;
(2)若f(x)在[-2,2]上是单调增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.根据条件计算
(Ⅰ)已知第二象限角α满足sinα=$\frac{1}{3}$,求cosα的值;
(Ⅱ)已知tanα=2,求$\frac{4cosα+sinα}{3cosα-2sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知不等式ax2+2x+c>0的解集为{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}.
(Ⅰ)求a、c的值;
(Ⅱ)解不等式cx2-2x+a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=Asin(ωx+φ) $(A>0,ω>0,|φ|<\frac{π}{2})$的最小正周期为2,且当x=$\frac{1}{3}$时,f(x)取得最大值2.
(1)求函数f(x)的解析式.
(2)在闭区间[$\frac{21}{4}$,$\frac{23}{4}$]上是否存在f(x)图象的对称轴?如果存在,求出对称轴方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一物体沿斜面自由下滑,测得下滑的水平距离s与时间t之间的函数关系为s=3t3,则当t=1时,该物体在水平方向的瞬时速度为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数g(x)=$\left\{\begin{array}{l}{{e}^{x-1},0≤x<1}\\{g(x-1),x≥1}\end{array}\right.$,则函数f(x)=g(x)-$\frac{x}{8}$的零点个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案