精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=Asin(ωx+φ) $(A>0,ω>0,|φ|<\frac{π}{2})$的最小正周期为2,且当x=$\frac{1}{3}$时,f(x)取得最大值2.
(1)求函数f(x)的解析式.
(2)在闭区间[$\frac{21}{4}$,$\frac{23}{4}$]上是否存在f(x)图象的对称轴?如果存在,求出对称轴方程;如果不存在,说明理由.

分析 (1)根据三角函数的周期性,最值性,求出A,ω和φ的值的值即可求f(x)的解析式;(2)求出函数的对称轴,解不等式即可.

解答 解:(1)∵函数的最小正周期为2,
∴$\frac{2π}{ω}$=2,即ω=π,
∵当x=$\frac{1}{3}$时,f(x)的最大值为2,
∴A=2,
此时f(x)=2sin(πx+φ),
且f($\frac{1}{3}$)=2sin(π×$\frac{1}{3}$+φ)=2,
即sin($\frac{1}{3}$π+φ)=1,
∵|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
则f(x)=2sin(πx+2kπ+$\frac{π}{6}$)=2sin(πx+$\frac{π}{6}$).
(2)由πx+$\frac{π}{6}$=kπ+$\frac{π}{2}$,
得x=k+$\frac{1}{3}$,即函数的对称轴为x=k+$\frac{1}{3}$,
由$\frac{21}{4}$≤k+$\frac{1}{3}$≤$\frac{23}{4}$,
即$\frac{21}{4}$-$\frac{1}{3}$≤k≤$\frac{23}{4}$-$\frac{1}{3}$,
即$\frac{59}{12}$≤k≤$\frac{65}{12}$,
∵k∈Z,
∴k=5,
故在闭区间[$\frac{21}{4}$,$\frac{23}{4}$]上是存在f(x)的对称轴,
其方程是x=$\frac{16}{3}$.

点评 本题主要考查三角函数解析式的求解以及三角函数对称轴的求解,要求熟练掌握三角函数的图象和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.关于x的不等式ax2+bx-2>0的解集是(-∞,-$\frac{1}{2}}$)∪(${\frac{1}{3}$,+∞),则ab等于24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x-2lnx的极值点为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,A,B,C的对边分别为a,b,c,且($\overrightarrow{AB}$)2=$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc对任意的满足题意的a,b,c都成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在数列{an}中,a1=1,an+1=2an+3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+3,求数列{nbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的内角B满足2cos2B-8cosB+5=0,若$\overrightarrow{BC}$=$\overrightarrow a$,$\overrightarrow{CA}$=$\vec b$且$\overrightarrow a,\vec b$满足:$\overrightarrow{a}$•$\overrightarrow{b}$=-9,$|{\overrightarrow a}|=3,|{\vec b}$|=5,θ为$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.
(Ⅰ)求∠B;
(Ⅱ)求sin(B+C).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设实数x∈R,则y=x+$\frac{1}{x+1}$的值域为(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=(x2-$\frac{3}{m}$x+$\frac{5}{m^2}$)emx,其中m≠0.
(1)讨论f(x)的单调性;
(2)若g(x)=f(x)-$\frac{1}{m}$x-5恰有两个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.经过1小时,时针旋转的角是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

同步练习册答案