【题目】如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G为BD中点,点R在线段BH上,且
=λ(λ>0).现将△AED,△CFD,△DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图2所示. ![]()
(I)若λ=2,求证:GR⊥平面PEF;
(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为
?若存在,求出λ的值;若不存在,请说明理由.
【答案】(I)证明:由题意,PE,PF,PD三条直线两两垂直,∴PD⊥平面PEF, 图1中,EF∥AC,∴GB=2GH,
∵G为BD中点,∴DG=2GH.
图2中,∵
=2,∴△PDH中,GR∥PD,
∴GR⊥平面PEF;
(Ⅱ)解:由题意,建立如图所示的坐标系,设PD=4,则P(0,0,0),F(2,0,0),E(0,2,0),D(0,0,4),∴H(1,1,0),
∵
=λ,∴R(
,
,0),
∴
=(
,﹣
,0),
∵
=(2,﹣2,0),
=(0,2,﹣4),
设平面DEF的一个法向量为
=(x,y,z),则
,取
=(2,2,1),
∵直线FR与平面DEF所成角的正弦值为
,
∴
=
,
∴λ=
,
∴存在正实数λ=
,使得直线FR与平面DEF所成角的正弦值为
.![]()
【解析】(I)若λ=2,证明PD⊥平面PEF,GR∥PD,即可证明:GR⊥平面PEF;(Ⅱ)建立如图所示的坐标系,求出平面DEF的一个法向量,利用直线FR与平面DEF所成角的正弦值为
,建立方程,即可得出结论.
【考点精析】本题主要考查了空间角的异面直线所成的角的相关知识点,需要掌握已知
为两异面直线,A,C与B,D分别是
上的任意两点,
所成的角为
,则
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
已知在直角坐标系xOy中,曲线C的参数方程为
(φ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρcos(θ﹣
)=2
.
(Ⅰ)求曲线C在极坐标系中的方程;
(Ⅱ)求直线l被曲线C截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣
)﹣cos(A+
)=
.
(1)求角A的大小;
(2)若a=
,sin2B+cos2C=1,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a=________,估计该小学学生身高的中位数为______
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的三个顶点
,其外接圆为圆
.
(1)若直线
过点
,且被圆
截得的弦长为
,求直线
的方程;
(2)对于线段
(包括端点)上的任意一点
,若在以
为圆心的圆上都存在不同的两点
,使得点
是线段
的中点,求圆
的半径
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)求sinAcosB的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】非零向量
,
的夹角为
,且满足|
|=λ|
|(λ>0),向量组
,
,
由一个
和两个
排列而成,向量组
,
,
由两个
和一个
排列而成,若
+
+
所有可能值中的最小值为4
2 , 则λ= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com