精英家教网 > 高中数学 > 题目详情
若△ABC的三个内角满足:2B=A+C,且A<B<C,tanAtanC=2+
3
,求A,B,C的大小.
考点:两角和与差的正切函数
专题:解三角形
分析:由A,B及C成等差数列,利用等差数列的性质得到A+C=2B,再利用三角形的内角和定理求出B的度数,进而得到A+C的度数,利用两角和与差的正切函数公式化简tan(A+C),根据A+C的度数,利用特殊角的三角函数值求出tan(A+C)的值,把已知的tanAtanC的值代入,求出tanA+tanC的值,根据韦达定理得到关于tanA和tanC的方程,求出方程的解得到tanA和tanC的值,利用特殊角的三角函数值求出A和C的度数.
解答: 解:由A+B+C=180°及A+C=2B,
得B=60°,A+C=120°,
∴tan(A+C)=
tanA+tanC
1-tanAtanC
=-
3
,又tanAtanC=2+
3

∴tanA+tanC=3+
3

∴tanA,tanC为二次方程x2-(3+
3
)x+2+
3
=0的根,
∴tanA=1,tanA=2+
3
或tanC=2+
3
,tanC=1,
∵A<B<C,
∴A=45°,C=75°.B=60°.
点评:此题属于解三角形的题型,涉及的知识有:两角和与差的正切函数公式,等差数列的性质,韦达定理,正弦定理以及特殊角的三角函数值,注意不要错解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+x)-
ax
x+1
(a>0).(注:[ln(1+x)]′=
1
1+x

(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范围;
(3)证明:(
2014
2015
2015
1
e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β∈[-
π
2
π
2
]
,且αsinα-βsinβ>0,则下列结论正确的是(  )
A、α3>β3
B、α+β>0
C、|α|<|β|
D、|α|>|β|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(4,-1),B(8,2)和直线l:x-y-1=0,动点P(x,y)在直线l上,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在定义域内是减函数的为(  )
A、y=-3x2
B、y=-
1
x
C、y=5x
D、y=-4x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
AB
的方向是东南方向,且|
AB
|=4,则向量-2
AB
的方向是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于非空数集A,若实数M满足对任意的a∈A恒有a≤M,则M为A的上界;若A的所有上界中存在最小值,则称此最小值为A的上确界,那么下列函数的值域中具有上确界的是(  )
A、y=
x+2
B、y=(-
3
2
)
C、y=
1
2
x
D、y=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:

如果以原点为圆心的圆经过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦点,且被该双曲线的右准线分成弧长为2:1的两段圆弧,那么该双曲线的离心率e等于(  )
A、
5
2
B、
2
C、
3
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD-A1B1C1D1是底面为正方形的长方体,∠AD1A1=60°,AD1=4,点P是AD1的中点,求异面直线AA1与B1P所成的角(结果用反三角函数表示).

查看答案和解析>>

同步练习册答案