13£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×㣺|$\overrightarrow{a}$|=13£¬|$\overrightarrow{b}$|=1£¬|$\overrightarrow{a}$-5$\overrightarrow{b}$|¡Ü12£¬Ôò$\overrightarrow{b}$ÔÚ$\overrightarrow{a}$ÉϵÄͶӰ³¤¶ÈµÄȡֵ·¶Î§ÊÇ$[\frac{5}{13}£¬1]$£®

·ÖÎö ½«ÒÑÖª²»µÈʽÁ½±ßƽ·½µÃµ½Á½¸öÏòÁ¿µÄÊýÁ¿»ýµÄ²»µÈʽ£¬ÀûÓÃÏòÁ¿µÄͶӰµÄ¶¨ÒåµÃµ½·¶Î§£®

½â´ð ½â£ºÓÉÒÑÖª£º|$\overrightarrow a|=13$£¬|$\overrightarrow b|=1$£¬|$\overrightarrow a-5\overrightarrow b|¡Ü12$£¬µÃµ½$|\overrightarrow{a}-5\overrightarrow{b}{|}^{2}¡Ü144$£¬ËùÒÔ169-10$\overrightarrow{a}•\overrightarrow{b}$+25¡Ü144£¬ËùÒÔ$\overrightarrow{a}•\overrightarrow{b}$¡Ý5ËùÒÔ$\overrightarrow b$ÔÚ$\overrightarrow a$ÉϵÄͶӰ$\overrightarrow{b}•cos£¼\overrightarrow{a}£¬\overrightarrow{b}£¾$$¡Ý\frac{5}{13}$£»ÓÖcos£¼$\overrightarrow{a}£¬\overrightarrow{b}$£¾¡Ü1£¬ËùÒÔ$\overrightarrow b$ÔÚ$\overrightarrow a$ÉϵÄͶӰµÄȡֵ·¶Î§ÊÇ[$\frac{5}{13}$£¬1]£»
¹Ê´ð°¸Îª£º$[\frac{5}{13}£¬1]$£®

µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿µÄÄ£µÄ¼ÆËãÒÔ¼°ÏòÁ¿µÄͶӰ£»¹Ø¼üÊǽ«ÒÑÖª²»µÈʽƽ·½µÃµ½ÊýÁ¿»ýµÄ·¶Î§£¬½øÒ»²½µÃµ½Í¶Ó°µÄ·¶Î§£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇÊÇ$\frac{¦Ð}{3}$£¬Èô|$\overrightarrow{a}$|=1£¬|$\overrightarrow{b}$|=2£¬Ôò|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Éèn=${¡Ò}_{1}^{2}$$\frac{{x}^{2}-1}{x}$dx£¬Ôò${e^{n-\frac{3}{2}}}$=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=x3+$\frac{5}{2}{x^2}$+ax+b£¬g£¨x£©=x3+$\frac{7}{2}{x^2}$+lnx+b£¬£¨a£¬bΪ³£Êý£©£®
£¨¢ñ£©Èôg£¨x£©ÔÚx=1´¦µÄÇÐÏß¹ýµã£¨0£¬-5£©£¬ÇóbµÄÖµ£»
£¨¢ò£©É躯Êýf£¨x£©µÄµ¼º¯ÊýΪf¡ä£¨x£©£¬Èô¹ØÓÚxµÄ·½³Ìf£¨x£©-x=xf¡ä£¨x£©ÓÐΨһ½â£¬ÇóʵÊýbµÄȡֵ·¶Î§£»
£¨¢ó£©ÁîF£¨x£©=f£¨x£©-g£¨x£©£¬Èôº¯ÊýF£¨x£©´æÔÚ¼«Öµ£¬ÇÒËùÓм«ÖµÖ®ºÍ´óÓÚ5+ln2£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ1£¬Ö±½ÇÌÝÐÎABCDÖУ¬AB¡ÎCD£¬¡ÏABC=90¡ã£¬CD=2AB=4£¬BC=2£®AE¡ÎBC½»CDÓÚµãE£¬µãG£¬H·Ö±ðÔÚÏß¶ÎDA£¬DEÉÏ£¬ÇÒGH¡ÎAE£®½«Í¼1Öеġ÷AEDÑØAE·­ÕÛ£¬Ê¹Æ½ÃæADE¡ÍÆ½ÃæABCE£¨Èçͼ2Ëùʾ£©£¬Á¬½áBD¡¢CD£¬AC¡¢BE£®

£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæDAC¡ÍÆ½ÃæDEB£»
£¨¢ò£©µ±ÈýÀâ×¶B-GHEµÄÌå»ý×î´óʱ£¬ÇóÖ±ÏßBGÓëÆ½ÃæBCDËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ä³Ñ§Ð£Îªµ÷²é¸ßÖÐÈýÄê¼¶ÄÐÉúµÄÉí¸ßÇé¿ö£¬Ñ¡È¡ÁË500ÃûÄÐÉú×÷ΪÑù±¾£¬ÈçͼÊǴ˴ε÷²éͳ¼ÆµÄÁ÷³Ìͼ£¬ÈôÊä³öµÄ½á¹ûÊÇ380£¬ÔòÉí¸ßÔÚ170cmÒÔÏÂµÄÆµÂÊΪ0.24£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªÖ´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Êä³öµÄS=485£¬ÔòÅжϿòÄÚµÄÌõ¼þ¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®k£¼5£¿B£®k£¾7£¿C£®k¡Ü5£¿D£®k¡Ü6£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑ֪˫ÇúÏߦ££º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬Ð±ÂÊΪ$\sqrt{3}$µÄÖ±Ïßl¾­¹ýË«ÇúÏߦ£µÄÓÒ½¹µãF2ÓëË«ÇúÏߦ£ÔÚµÚÒ»ÏóÏÞ½»Óڵ㣬Èô¡÷PF1F2ÊǵÈÑüÈý½ÇÐΣ¬ÔòË«ÇúÏߦ£µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®$\sqrt{3}$+1C£®$\frac{\sqrt{3}-1}{2}$D£®$\frac{\sqrt{3}+1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÇóÖ¤£º|$\frac{{a}^{2}-{b}^{2}}{a}$|¡Ý|a|-|b|£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸