精英家教网 > 高中数学 > 题目详情

如图,ABCD是一块边长为100m的正方形地皮,其中AST是一半径为90m的扇形小山,其他部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在弧ST上,相邻两边CQ,CR落在正方形的边BC,CD上,求矩形停车场PQCR的面积S的最大值和最小值(结果取整数).

);

解析试题分析:如图,

,则
;………………(3分)
,由;…………………(3分)
时,);
时,).……………………(4分)
考点:函数的实际应用题。
点评:研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立模型的步骤可分为: (1) 分析问题中哪些是变量,哪些是常量,分别用字母表示; (2) 根据所给条件,运用数学知识,确定等量关系; (3) 写出的解析式并指明定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
为实数,且
(1)求方程的解;
(2)若满足,试写出的等量关系(至少写出两个);
(3)在(2)的基础上,证明在这一关系中存在满足.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)已知.
(I)求的单调增区间;
(II)若在定义域R内单调递增,求的取值范围;
(III)是否存在,使在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数
(Ⅰ) 当时,求函数的最大值;
(Ⅱ)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若对任意正实数x,不等式恒成立,求实数k的值;
(Ⅲ)求证:.(其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数,记
(Ⅰ)判断的奇偶性,并证明;
(Ⅱ)对任意,都存在,使得.若,求实数的值;
(Ⅲ)若对于一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)我们把同时满足下列两个性质的函数称为“和谐函数” :
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间,使得函数在区间上的值域为.
⑴已知幂函数的图像经过点,判断是否是和谐函数?
⑵判断函数是否是和谐函数?
⑶若函数是和谐函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:

x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

16
10
8.34
8.1
8.01
8
8.01
8.04
8.08
8.6
10
11.6
15.14

请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数在区间(0,2)上递减;函数在区间                     上递增.当             时,                 .
(2)证明:函数在区间(0,2)递减.
(3)思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知是定义在[-1,1]上的奇函数,当,且时有.
(1)判断函数的单调性,并给予证明;
(2)若对所有恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案