精英家教网 > 高中数学 > 题目详情
14.若集合M={x|log2(x-1)<-1},N={x|$\frac{1}{4}$≤($\frac{1}{2}$)x+1<1},则∁R(M∪N)=(  )
A.{x|-1<x<2}B.{x|x≤-1或x$≥\frac{3}{2}$}C.{x|0<x<$\frac{3}{2}$}D.{x|x≤0或x≥2}

分析 由对数运算及指数运算可知M=(1,$\frac{3}{2}$),N=(-1,1],从而求M∪N=(-1,$\frac{3}{2}$)及∁R(M∪N)={x|x≤-1或x$≥\frac{3}{2}$}.

解答 解:∵log2(x-1)<-1,
∴0<x-1<$\frac{1}{2}$,
故M=(1,$\frac{3}{2}$),
∵$\frac{1}{4}$≤($\frac{1}{2}$)x+1<1,
∴0<x+1≤2,
∴N=(-1,1],
故M∪N=(-1,$\frac{3}{2}$),
故∁R(M∪N)={x|x≤-1或x$≥\frac{3}{2}$},
故选:B.

点评 本题考查了对数运算及指数运算的应用,同时考查了集合的化简与集合的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设m<0,点M(m,-2m)为角α的终边上一点,则$\frac{1}{{2sinαcosα+{{cos}^2}α}}$的值为(  )
A.$-\frac{5}{3}$B.-2C.$\frac{2}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知b>a>0,则M=$\frac{{a}^{2}+2ab+{b}^{2}}{ab-{a}^{2}}$的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是A1B1、B1C1的中点.
(1)求三棱锥A1-AB1D1体积;
(2)求异面直线DB1与EF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x2-ax(a<0)的最小值为-$\frac{1}{4}$,执行如图所示的程序框图,则输出的k值是(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.根据下列各无穷数列的前5项,写出数列的一个通项公式:
(1)2,2,2,2,2,…;
(2)4,9,16,25,36,…;
(3)$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,$\frac{1}{4×5}$,$\frac{1}{5×6}$,….

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知点F1,F2是椭圆C1:$\frac{{x}^{2}}{2}$+y2=1的两个焦点,椭圆C2:$\frac{{x}^{2}}{2}$+y2=λ经过点F1,F2,点P是椭圆C2上异于F1,F2的任意一点,直线PF1和PF2与椭圆C1的交点分别是A,B和C,D,设AB、CD的斜率为k,k′.
(1)求证kk′为定值;
(2)求|AB|•|CD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:
(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{a}$=a
(2)(0.0081)${\;}^{-\frac{1}{4}}$-[3×($\frac{7}{8}$)0]-1•[81-0.25+(3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}$]${\;}^{-\frac{1}{2}}$-10×0.027${\;}^{\frac{1}{3}}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知中心在原点O的圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点P($\sqrt{3}$,$\frac{1}{2}$),离心率e=$\frac{\sqrt{3}}{2}$.
(I)求椭圆C的标准方程;
(Ⅱ)动直线1:y=kx+m与椭圆相交于A,B两点,且△AOB的面积恒为1,若M为线段AB的中点,问是否存在两个定点P,Q,使得|MP|+|MQ|为定值?若存在,求P,Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案