精英家教网 > 高中数学 > 题目详情
19.若数列{an}成等比数列,其公比为2,则$\frac{2{a}_{2}+{a}_{3}}{2{a}_{4}+{a}_{5}}$=$\frac{1}{4}$.

分析 利用等比数列的通项公式即可得出.

解答 解:∵数列{an}成等比数列,其公比为2,
则$\frac{2{a}_{2}+{a}_{3}}{2{a}_{4}+{a}_{5}}$=$\frac{{a}_{1}(2q+{q}^{2})}{{a}_{1}(2{q}^{3}+{q}^{4})}$=$\frac{1}{{q}^{2}}$=$\frac{1}{4}$,
故答案为:$\frac{1}{4}$.

点评 本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.数列{an}中,a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.把区间[1,3]n等分,所得每个小区间的长度△x等于(  )
A.$\frac{1}{n}$B.$\frac{2}{n}$C.$\frac{1}{2n}$D.$\frac{3}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}的前n项和Sn,且满足${S_{n+1}}={n^2}-n$,则a1=(  )
A.4B.2C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,正方形ABCD与梯形AMPD所在的平面互相垂直,AD⊥PD,MA∥PD,MA=AD=$\frac{1}{2}$PD=1.
(Ⅰ)求证:MB∥平面PDC;
(Ⅱ)求二面角M-PC-D的余弦值;
(Ⅲ)E为线段PC上一点,若直线DE与直线PM所成的角为60°,求PE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x),对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),当x>0时,f(x)<0,且$f(1)=-\frac{1}{2}$.
(Ⅰ) 求f(0),f(3)的值;
(Ⅱ) 当-8≤x≤10时,求函数f(x)的最大值和最小值;
(Ⅲ) 设函数g(x)=f(x2-m)-2f(|x|),判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sin$\frac{πx}{2}$(x∈R).任取t∈R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t).
(Ⅰ)求函数f(x)的最小正周期及对称轴方程
(Ⅱ)当t∈[-2,0]时,求函数g(t)的解析式
(Ⅲ)设函数h(x)=2|x-k|,H(x)=x|x-k|+2k-8,其中实数k为参数,且满足关于t的不等式$\sqrt{2}$k-5g(t)≤0有解.若对任意x1∈[4,+∞),存在x2∈(-∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围
参考公式:sinα-cosα=$\sqrt{2}$sin(α-$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中正确的个数是(  )
①命题“?x∈(1,+∞),2x>2”的否定是“?x∉(1,+∞),2x>2”;
②“a=2”是“|a|=2”的必要不充分条件;
③若命题p为真,命题¬q为真,则命题p∧q为真;
④命题“在△ABC中,若$sinA<\frac{1}{2}$,则$A<\frac{π}{6}$”的逆否命题为真命题.
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案