ΪÁË·ÖÎöij¸ö¸ßһѧÉúµÄѧϰ״̬£¬¶ÔÆäÏÂÒ»½×¶ÎµÄѧϰÌṩָµ¼ÐÔ½¨Ò飮ÏÖ¶ÔËûǰ7´Î¿¼ÊÔµÄÊýѧ³É¼¨x¡¢ÎïÀí³É¼¨y½øÐзÖÎö£®ÏÂÃæÊǸÃÉú7´Î¿¼ÊԵijɼ¨£®
| Êýѧ | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
| ÎïÀí | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
£¨1£©ËûµÄÊýѧ³É¼¨ÓëÎïÀí³É¼¨Äĸö¸üÎȶ¨£¿Çë¸ø³öÄãµÄÖ¤Ã÷£®
£¨2£©ÒÑÖª¸ÃÉúµÄÎïÀí³É¼¨yÓëÊýѧ³É¼¨xÊÇÏßÐÔÏà¹ØµÄ£¬Èô¸ÃÉúµÄÎïÀí³É¼¨´ïµ½115·Ö£¬ÇëÄã¹À¼ÆËûµÄÊýѧ³É¼¨´óÔ¼ÊǶàÉÙ£¿²¢ÇëÄã¸ù¾ÝÎïÀí³É¼¨ÓëÊýѧ³É¼¨µÄÏà¹ØÐÔ£¬¸ø³ö¸ÃÉúÔÚѧϰÊýѧ¡¢ÎïÀíÉϵĺÏÀí½¨Ò飮
²Î¿¼¹«Ê½£º»Ø¹éÖ±Ïߵķ½³ÌÊÇ£º
=bx+a£¬
ÆäÖÐb=
| n |  | | i=1 | (xi-)(yi-) |
| n |  | | i=1 | (xi-)2 |
£¬a=-b£»ÆäÖÐiÊÇÓëxi¶ÔÓ¦µÄ»Ø¹é¹À¼ÆÖµ£®