| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |
分析 利用正弦定理把已知等式转化成角的正弦的关系式,利用两角和公式化简整理可求得cosA的值,进而求得A.
解答 解:△ABC中,∵acosC+$\frac{1}{2}$c=b,
∴由正弦定理得:sinAcosC+$\frac{1}{2}$sinC=sinB,
∴sinAcosC+$\frac{1}{2}$sinC=sin(A+C),
∴sinAcosC+$\frac{1}{2}$sinC=sinAcosC+cosAsinC,
∴$\frac{1}{2}$sinC=cosAsinC,
∴cosA=$\frac{1}{2}$,
∴∠A=$\frac{π}{3}$.
故选:A.
点评 本题主要考查了正弦定理的运用,运用了转化和化归的思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a | B. | 2a | C. | $\frac{\sqrt{3}}{2}$a | D. | $\frac{\sqrt{3}}{27}$a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com